850
Views
0
CrossRef citations to date
0
Altmetric
Articles

Differential and interactive effects of cytoplasmic substitution and seed ageing on submergence stress response in wheat (Triticum aestivum L.)

, &
Pages 75-85 | Received 20 Jul 2018, Accepted 15 Nov 2018, Published online: 27 Dec 2018

References

  • Tsunewaki K. Plasmon analysis in the Triticum-Aegilops complex. Breed Sci. 2009;59:455–470.
  • Kihara H. Nucleo-cytoplasmic hybrid and nucleo-cytoplasm heterosis. Seiken Ziho. 1979;26/27:1–3.
  • Keane EM, Jones PW. Effects of alien cytoplasm substitution on the response of wheat cultivars to Septoria nodorum. Ann Appl Biol. 1990;117:299–312.
  • Dhitaphichit P, Jones P, Keane EM. Nuclear and cytoplasmic gene control of resistance to loose smut (Ustilago tritici (Pers.) Rostr.) in wheat (Triticum aestivum L.).). Theor Appl Genet. 1989;78:897–903.
  • Nakamura C, Kasai K, Kubota Y, et al. Cytoplasmic diversity in alloplasmic common wheats with cytoplasms of Triticum and Aegilops revealed by photosynthetic and respiratory characteristics. Jpn J Genet. 1991;66:471–483.
  • Tsunewaki K, Wang GZ, Matsuoka Y. Plasmon analysis of Triticum (wheat) and Aegilops. 2. Characterization and classification of 47 plasmons based on their effects on common wheat phenotypes. Genes Genet Syst. 2002;77:409–427.
  • Liu CG, Wu YW, Hou H, et al. Value and utilization of alloplasmic common wheats with Aegilops crassa cytoplasm. Plant Breed. 2002;121:407–410.
  • Atienza SG, Martin A, Pecchioni N, et al. The nuclear-cytoplasmic interaction controls carotenoid content in wheat. Euphytica. 2008;159:325–331.
  • Crosatti C, Quansah L, Mare C, et al. Cytoplasmic genome substitution in wheat affects the nuclear-cytoplasmic cross-talk leading to transcript and metabolite alterations. BMC Genomics. 2013;14:868. [cited 2018 Oct 03] DOI:10.1186/1471-2164-14-868
  • Talukder SK, Prasad PVV, Todd T, et al. Effect of cytoplasmic diversity on post anthesis heat tolerance in wheat. Euphytica. 2015;204:383–394.
  • Cahalan C, Law CN. The genetical control of cold resistance and vernalisation requirement in wheat. Heredity. 1979;42:125–132.
  • Singh SP, Srivastava R, Kumar J. Male sterility system in wheat and opportunities for hybrid wheat development. Acta Physiol Plant. 2015;37:1713. DOI:10.1007/s11738-014-1713-7
  • Tsunewaki K. Fine mapping of the first multi-fertility-restoring gene, Rfmulti, of wheat for three Aegilops plasmons, using 1BS-1RS recombinant lines. Theor Appl Genet. 2015;128:723–732.
  • Murai K, Ohta H, Kurushima M, et al. Photoperiod-sensitive cytoplasmic male sterile elite lines for hybrid wheat breeding, showing high cross-pollination fertility under long-day conditions. Euphytica. 2016;212:313–322.
  • Lukaszewski AJ. Chromosomes 1BS and 1RS for control of male fertility in wheats and triticales with cytoplasms of Aegilops kotschyi, Ae. mutica and Ae. uniaristata. Theor Appl Genet. 2017;130:2521–2526.
  • Finch-Savage WE, Bassel GW. Seed vigour and crop establishment: extending performance beyond adaptation. J Exp Bot. 2016;67:567–591.
  • Rajjou L, Duval M, Gallardo K, et al. Seed germination and vigor. Annu Rev Plant Biol. 2012;63:507–533.
  • Setter TL, Waters I. Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil. 2003;253:1–34.
  • Setter TL, Waters I, Sharma SK, et al. Review of wheat improvement for waterlogging tolerance in Australia and India: the importance of anaerobiosis and element toxicities associated with different soils. Ann Bot. 2009;103:221–235.
  • Bailey-Serres J, Lee SC, Brinton E, et al. Waterproofing crops: effective flooding survival strategies. Plant Physiol. 2012;160:1698–1709.
  • Bailey-Serres J, Fukao T, Gibbs DJ, et al. Making sense of low oxygen sensing. Trends Plant Sci. 2012;17:129–138.
  • Arduni I Orlandi C, Ercoli L, et al. Submergence sensitivity of durum wheat, bread wheat and barley at germination stage. Ital J Agron. 2016;11:100–106. DOI:10.4081/ija.2016.706
  • Hay FR, Probert RJ. Advances in seed conservation of wild plant species: a review of recent research. Conserv Physiol. 2013;1:cot030. DOI:10.1093/conphys/cot030
  • Fu YB, Ahmed Z, Diederichsen A. Towards a better monitoring of seed ageing under ex situ seed conservation. Conserv Physiol. 2015;3:cov026. DOI:10.1093/conphys/cov026
  • Agacka-Mołdoch M, Arif MAR, Lohwasser U, et al. The inheritance of wheat grain longevity: a comparison between induced and natural ageing. J Appl Genet. 2016;57:477–481.
  • Arif MAR, Nagel M, Lohwasser U, et al. Genetic architecture of seed longevity in bread wheat (Triticum aestivum L.). J Biosci. 2017;42:81–89.
  • Van T, Bas N, Kodde J, et al. Rapid loss of seed viability in ex situ conserved wheat and barley at 4 °C as compared to -20 °C storage. Conserv Biol. 2018;6:1–10.
  • Howell KA, Cheng K, Murcha MW, et al. Oxygen initiation of respiration and mitochondrial biogenesis in rice. J Biol Chem. 2007;282:15619–15631.
  • Logan DC, Millar AH, Sweetlove LJ, et al. Mitochondrial biogenesis during germination in maize embryos. Plant Physiol. 2001;125:662–672.
  • Howell KA, Millar AH, Whelan J. Ordered assembly of mitochondria during rice germination begins with promitochondrial structures rich in component of the protein import apparatus. Plant Mol Biol. 2006;60:201–223.
  • Khanam S, Naydenov NG, Kadowaki K, et al. Mitochondrial biogenesis as revealed by mitochondrial transcript profiles during germination and early seedling growth in wheat. Genes Genet Syst. 2007;82:409–420.
  • Naydenov NG, Khanam S, Atanassov A, et al. Expression profiles of respiratory components associated with mitochondrial biogenesis during germination and seedling growth under normal and restricted conditions in wheat. Genes Genet Syst. 2008;83:31–41.
  • Naydenov NG, Khanam S, Siniauskaya M, et al. Profiling of mitochondrial transcriptome in germinating wheat embryos and seedlings subjected to cold, salinity and osmotic stresses. Genes Genet Syst. 2010;85:31–42.
  • Paszkioewicz G, Gualberto JM, Benamar A, et al. Arabidopsis seed mitochondria are bioenergetically active immediately upon imbibition and specialize via biogenesis in preparation for autotrophic growth. Plant Cell. 2017;29:109–128.
  • Weitbrecht K, Muller K, Leubner-Metzger G. First off the mark: early seed germination. J Exp Bot. 2011;62:3289–3309.
  • Manangkil OE, Vu HTT, Yoshida S, et al. A simple, rapid and reliable bioassay for evaluating seedling vigor under submergence in indica and japonica rice (Oryza sativa L.). Euphytica. 2008;163:267–274.
  • Manangkil OE, Vu HTT, Mori N, et al. Mapping of quantitative trait loci controlling seedling vigor in rice (Oryza sativa L.). Euphytica. 2013;192:63–75.
  • Vu HTT, Manangkil OE, Mori N, et al. Post-germination seedling vigor under submergence and submergence-induced SUB1A gene expression in indica and japonica rice (Oryza sativa L.). Aust J Crop Sci. 2010;4:264–272.
  • Vu HTT, Nguyen GT, Nguyen HTT, et al. Contribution of seedling vigour and anoxia/hypoxia-responsive genes to submergence tolerance in Vietnamese lowland rice germplasm. Biotech Biotech Equip. 2016;30:842–852.
  • Hothorm T, Hornik K. exactRankTests; exact distributions for rank and permutation tests. 2006. Available from: ftp.auckland.ac.nz/software/CRAN/doc/packages/exactRankTests.pdf
  • Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452–458.
  • Budar F, Roux S. The role of organelle genomes in plant adaptation: time to get to work! Plant Signal Behav. 2011;6:635–639.
  • Bock DG, Andrew RL, Rieseberg LH. On the adaptive value of cytoplasmic genomes in plants. Mol Ecol. 2014;23:4899–4911.
  • Dobler R, Rogell B, Budar F, et al. A meta-analysis of the strength and nature of cytoplasmic genetic effects. J Evol Biol. 2014;27:2021–2034.
  • Lovell JT, Mullen JL, Lowry DB, et al. Exploiting differential gene expression and epistasis to discover candidate genes for drought-associated QTLs in Arabidopsis thaliana. Plant Cell. 2015;27:969–983.
  • Wagner S, Van Aken O, Elsa¨Sser M, et al. Mitochondrial energy signaling and its role in the low-oxygen stress response of plants. Plant Physiol. 2018;176:1156–1170.
  • Moison M, Roux F, Quadrado M, et al. Cytoplasmic phylogeny and evidence of cyto-nuclear co-adaptation in Arabidopsis thaliana. Plant J. 2010;63:728–738.
  • Joseph B, Corwin JA, Li B, et al. Cytoplasmic genetic variation and extensive cytonuclear interactions influence natural variation in the metabolome. Elife. 2013;2:e00776 [cited 2018 Oct 03] DOI:10.7554/eLife.00776
  • Roux F, Mary-Huard T, Barillot E, et al. Cytonuclear interactions affect adaptive traits of the annual plant Arabidopsis thaliana in the field. Proc Natl Acad Sci USA. 2016;113:3687–3692.
  • Soltani A, Kumar A, Mergoum M, et al. Novel nuclear-cytoplasmic interaction in wheat (Triticum aestivum) induces vigorous plants. Funct Integr Genomics. 2016;16:171–182.
  • Takenaka S, Yamamoto R, Nakamura C. Genetic diversity of submergence stress response in cytoplasms of the Triticum-Aegilops complex. Sci Rep. 2018;8:16267. DOI:10.1038/s41598-018-34682-3
  • Miro B, Ismail AM. Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.). Front Plant Sci. 2013;4:269. DOI:10.3389/fpls.2013.00269
  • Steffens B, Steffen-Heins A, Sauter M. Reactive oxygen species mediate growth and death in submerged plants. Front Plant Sci. 2013;4:179. DOI:10.3389/fpls.2013.00179
  • Tamang BG, Fukao T. Plant adaptation to multiple stresses during submergence and following desubmergence. IJMS. 2015;16:30164–30180.
  • Saxena I, Srikanth S, Chen Z. Cross talk between H2O2 and interacting signal molecules under plant stress response. Front Plant Sci. 2016;7:570. DOI:10.3389/fpls.2016.00570
  • Choudhury F, Rivero RM, Blumwald E, et al. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017;90:856–867.
  • Bailly C, Bailly C. Active oxygen species and antioxidants in seeds biology. Seed Sci Res. 2004;14:93–107.
  • Jeevan Kumar SP, Rajendra Prasad S, Banerjee R, et al. Seed birth to death: dual functions of reactive oxygen species in seed physiology. Ann Bot. 2015;116:663–668.
  • Ahmed Z, Shah ZH, Rehman HM, et al. Genomics: a hallmark to monitor molecular and biochemical processes toward a better perspective of seed aging and ex-situ conservation. Curr Issues Mol Biol. 2017;22:89–112.