1,045
Views
1
CrossRef citations to date
0
Altmetric
Articles

Identification of CDC25-P1306L, a novel mutant allele of CDC25, conferring tolerance to multiple stresses associated with food production on Saccharomyces cerevisiae

, , &
Pages 162-169 | Received 17 Jun 2018, Accepted 11 Dec 2018, Published online: 10 Jan 2019

References

  • Attfield PV. Stress tolerance: the key to effective strains of industrial baker's yeast. Nat Biotechnol. 1997;15:1351–1357.
  • Marullo P, Mansour C, Dufour M, et al. Genetic improvement of thermo-tolerance in wine Saccharomyces cerevisiae strains by a backcross approach. FEMS Yeast Res. 2009;9:1148–1160.
  • Nakagawa Y, Ogihara H, Mochizuki C, et al. Development of intra-strain self-cloning procedure for breeding baker's yeast strains. J Biosci Bioeng. 2017;123:319–326.
  • Erasmus DJ, van der Merwe GK, van Vuuren HJ. Genome-wide expression analyses: metabolic adaptation of Saccharomyces cerevisiae to high sugar stress. FEMS Yeast Res. 2003;3:375–399.
  • Lin X, Zhang CY, Bai XW, et al. Improvement of stress tolerance and leavening ability under multiple baking-associated stress conditions by overexpression of the SNR84 gene in baker’s yeast. Int J Food Microbiol. 2015;197:15–21.
  • Picazo C, Orozco H, Matallana E, et al. Interplay among Gcn5, Sch9 and mitochondria during chronological aging of wine yeast is dependent on growth conditions. PLoS One. 2015;10:e0117267. DOI:10.1371/journal.pone.0117267
  • Sauer M, Mattanovich D. Non-genetic impact factors on chronological lifespan and stress resistance of baker’s yeast. Microb Cell. 2016;3:232–235.
  • Watanabe M, Tamura K, Magbanua JP, et al. Elevated expression of genes under the control of stress response element (STRE) and Msn2p in an ethanol-tolerance sake yeast Kyokai no. 11. J Biosci Bioeng. 2007;104:163–170.
  • Matallana E, Aranda A. Biotechnological impact of stress response on wine yeast. Lett Appl Microbiol. 2017;64:103–110.
  • Akada R. Genetically modified industrial yeast ready for application. J Biosci Bioeng. 2002;94:536–544.
  • Ando A, Suzuki C, Shima J. Survival of genetically modified and self-cloned strains of commercial baker’s yeast in simulated natural environments: environmental risk assessment. Appl Environ Microbiol. 2005;71:7075–7082.
  • Ramirez M, Vinagre A, Ambrona J, et al. Genetic instability of heterozygous, hybrid, natural wine yeasts. Appl Environ Microbiol. 2004;70:4686–4691.
  • Takashita H, Kajiwara Y, Shimoda M, et al. Genetic instability of constitutive acid phosphatase in shochu and sake yeast. J Biosci Bioeng. 2013;116:71–78.
  • Nakagawa Y, Seita J, Komiyama S, et al. A new simple method for isolating multistress-tolerant semidominant mutants of Saccharomyces cerevisiae by one-step selection under lethal hydrogen peroxide stress condition. Biosci Biotechnol Biochem. 2013;77:224–228.
  • Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2001.
  • Amberg DC, Burke DJ, Strathern JN. Methods in yeast genetics: a cold spring harbor laboratory course manual. 2005 ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2005.
  • Akada R, Kitagawa T, Kaneko S, et al. PCR-mediated seamless gene deletion and marker recycling in Saccharomyces cerevisiae. Yeast. 2006;23:399–405.
  • Hereford L, Fahrner K, Woolford J, Jr, et al. Isolation of yeast histone genes H2A and H2B. Cell. 1979;18:1261–1271.
  • Iida N, Yamao F, Nakamura Y, et al. Mudi, a web tool for identifying mutations by bioinformatics analysis of whole-genome sequence. Genes Cells. 2014;19:517–527.
  • Struhl K, Stinchcomb DT, Scherer S, et al. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci USA. 1979;76:1035–1039.
  • Goffeau A, Barrell BG, Bussey H, et al. Life with 6000 genes. Science. 1996;274:546, 563–547.
  • Jones S, Vignais ML, Broach JR. The CDC25 protein of Saccharomyces cerevisiae promotes exchange of guanine nucleotides bound to Ras. Mol Cell Biol. 1991;11:2641–2646.
  • Rodaway AR, Sternberg MJ, Bentley DL. Similarity in membrane proteins. Nature. 1989;342:624.
  • Kaplon T, Jacquet M. The cellular content of Cdc25p, the Ras exchange factor in Saccharomyces cerevisiae, is regulated by destabilization through a cyclin destruction box. J Biol Chem. 1995;270:20742–20747.
  • Lai CC, Boguski M, Broek D, et al. Influence of guanine nucleotides on complex formation between Ras and CDC25 proteins. Mol Cell Biol. 1993;13:1345–1352.
  • Boguski MS, McCormick F. Proteins regulating Ras and its relatives. Nature. 1993;366:643–654.
  • Boriack-Sjodin PA, Margarit SM, Bar-Sagi D, et al. The structural basis of the activation of Ras by Sos. Nature. 1998;394:337–343.
  • Thevelein JM, de Winde JH. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol. 1999;33:904–918.
  • Conrad M, Schothorst J, Kankipati HN, et al. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev. 2014;38:254–299.
  • Folch-Mallol JL, Martinez LM, Casas SJ, et al. New roles for CDC25 in growth control, galactose regulation and cellular differentiation in Saccharomyces cerevisiae. Microbiology. 2004;150:2865–2879.
  • Satomura A, Miura N, Kuroda K, et al. Reconstruction of thermotolerant yeast by one-point mutation identified through whole-genome analyses of adaptively-evolved strains. Sci Rep. 2016;6:23157.
  • Kotaka A, Sahara H, Hata Y. The construction and application of diploid sake yeast with a homozygous mutation in the FAS2 gene. J Biosci Bioeng. 2010;110:675–678.
  • Oda Y, Ouchi K. Genetic analysis of haploids from industrial strains of baker’s yeast. Appl Environ Microbiol. 1989;55:1742–1747.