1,974
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Current bioeconomical interest in stramenopilic Eustigmatophyceae: a review

, , , , , , & show all
Pages 302-314 | Received 11 Dec 2018, Accepted 18 Jan 2019, Published online: 07 Feb 2019

References

  • Zawojska A, Siudek T. Bioeconomics as interdisciplinary science. Proceedings of the 2016 International Conference “Economic science for rural development” 41; 2016 April 21–22; Jelgava, LLU ESAF; 2016. p. 273–280.
  • European Commission Innovating for sustainable growth: A Bioeconomy for Europe. Luxembourg: Publication Office of the European Union. 2012;64.
  • Wilkie C, Edmundson SJ, Duncan JG. Indigenous algae for local bioresource production: Phycoprospecting. Energy Sustain Dev. 2011;15:365–371.
  • Senhorincho GNA, Laamanen CA, Scott JA. Bioprospecting freshwater microalgae for antibacterial activity from water bodies associated with abandoned mine sites. Phycologia. 2018;57:432–439.
  • Patil V, Tran KQ, Giselrød HR. Towards sustainable production of biofuels from microalgae. Int J Mol Sci. 2008;9:1188–1195.
  • Khan S, Siddique R, Sajjad W. Biodisel production from algae to overcome the energy crisis. Hayyati J Biosci. 2017;24:163–167.
  • Slocombe SP, Zhang Q, Ross M, et al. Unlocking nature's treasure-chest: screening for oleaginous algae. Sci Rep. 2015;5:9844.
  • Murakami H, Nobusawa T, Hori K, et al. Betaine lipid is crucial for adapting to low temperature and phosphate deficiency in Nannochloropsis. Plant Physiol. 2018;177:181–193.
  • Antia NJ, Cheng JY. The keto-carotenoids of two marine coccoid members of the Eustigmatophyceae. Br Phycol J. 1982;17:39–50.
  • Hager A, Stransky H. Das Carotinoidmuster und der Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. III. Archiv Mikrobiol. 1970;72:68–83.
  • Lubián LM, Montero O, Moreno-Garrido I, et al. Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. J Appl Phycol. 2000;12:249–255.
  • Stoyneva-Gärtner MP, Stoykova P, Uzunov B, et al. Carotenoids in five aeroterrestrial strains from Vischeria/Eustigmatos group: Updating the pigment pattern of Eustigmatophyceae. Biotechnol Biotechnol Equip. 2019;1. 19p. doi: 10.1080/13102818.2018.1562984.
  • Higuera-Ciapara I, Félix-Valenzuela L, Goycoolea FM. Astaxanthin: A review of its chemistry and applications. Crit Rev Food Sci Nutr. 2006;46:185–196.
  • Ambati RR, Siew-Moi P, Sarada R, et al. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications - A review. Mar Drugs. 2014;12:128–152.
  • Shah MM, Liang Y, Cheng JJ, et al. Astaxanthin-producing green microalga Haematococcus pluvialis: from single cell to high value commercial products. Front Plant Sci. 2016;7:531.
  • European register of food additives pursuant to Regulation (EC) No 1831/2003. Annex II. Luxembourg: Publication office of European Union. 2018;
  • Summary of Color Additives for Use in the United States in Foods, Drugs, Cosmetics, and Medical Devices. USA Food and Drug Administration; [cited 2011 Oct 27]. Available from: https://www.fda.gov/ForIndustry/ColorAdditives/ColorAdditiveInventories/ucm115641.htm
  • Color Additive Status List. List 4. USA Food and Drug Administration; [cited 2011 Oct 27]. Available from: https://www.fda.gov/ForIndustry/ColorAdditives/ColorAdditiveInventories/ucm106626.htm
  • Astaxanthin wins full GRAS status. FDA [cited 2010 Jan 19]. Available from: https://www.nutraingredients-usa.com/Article/2010/01/19/Astaxanthin-wins-full-GRAS-status
  • Park JS, Chyun JH, Kim YK, et al. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr Metab (Lond). 2010;7:18–28.
  • McCall BCK, McPartland R, Moore A, et al. Effects of astaxanthin on the proliferation and migration of breast cancer cells in vitro. Antioxidants. 2018;7:135–143.
  • Li Z, Sun M, Li Q, et al. Profiling of carotenoids in six microalgae (Eustigmatophyceae) and assessment of their β-carotene productions in bubble column photobioreactor. Biotechnol Lett. 2012;34:2049–2053.
  • Li Z, Ma XQ, Li AF, et al. A novel potential source of β-carotene: Eustigmatos cf. polyphem (Eustigmatophyceae) and pilot β-carotene production in bubble column and flat panel photobioreactors. Bioresour Technol. 2012;117:257–263.
  • EU approved additives and E Numbers. UK Food Standards Agency; [2018]. Available from: https://www.food.gov.uk/business-guidance/eu-approved-additives-and-e-numbers
  • Prieto A, Pedro Canãvate JP, García-González M. Assessment of carotenoid production by Dunaliella salina in different culture systems and operation regimes. J Biotechnol. 2011;151:180–185.
  • Gao B, Yang J, Lei X, et al. Characterization of cell structural change, growth, lipid accumulation, and pigment profile of a novel oleaginous microalga, Vischeria stellata (Eustigmatophyceae), cultured with different initial nitrate supplies. J Appl Phycol. 2016;28:821–830.
  • Food additive status list. US Food and Drug Administration; [cited 2018 Apr 01]. Available from: https://www.fda.gov/food/ingredientspackaginglabeling/foodadditivesingredients/ucm091048.htm#ftnV
  • Talero E, García-Mauriño S, Ávila-Román A, et al. Bioactive compounds isolated from microalgae in chronic inflammation and cancer. Mar Drugs. 2015;13:6152–6209.
  • Wang F, Huang L, Gao B, et al. Optimum production conditions, purification, identification, and antioxidant activity of violaxanthin from microalga Eustigmatos cf. polyphem (Eustigmatophyceae). Mar Drugs. 2018;16:190.
  • FDA-3 Agency Additional Correspondence Letter GRAS Notice No. GRN 000140 of 29th July 2016
  • Miranda JM, Anton X, Redondo-Valbuena C, et al. Egg and egg-derived foods: Effects on human health and use as functional foods. Nutrients. 2015;7:706–729.
  • Li B, Vachali P, Bernstein PS. Human ocular carotenoid-binding proteins. Photochem Photobiol Sci. 2010; 9:1418–1425.
  • Nolan JM, Meagher K, Kashani S, et al. What is meso-zeaxanthin, and where does it come from?. Eye (Lond). 2013;27:899–905.
  • Koo E, Neuringer M, Sangiovanni JP. Macular xanthophylls, lipoprotein-related genes, and age-related macular degeneration. Amer J Clinic Nutr. 2014;100:336S–346S.
  • Pinazo-Durán MD, Gómez-Ulla F, Arias L, et al. Do nutritional supplements have a role in age macular degeneration prevention?. J Ophthalmol. 2014;2014:901686.
  • Wang X, Jiang C, Zhang Y, et al. Role of lutein supplementation in the management of age-related macular degeneration: meta-analysis of randomized controlled trials. Ophthalmic Res. 2014;52:198–205.
  • Bernstein PS, Li B, Vachali PP, et al. Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Prog Retin Eye Res. 2016;50:34–66.
  • Yu B, Wang J, Suter PM, et al. Spirulina is an effective dietary source of zeaxanthin to humans. Br J Nutr. 2012;108:611–619.
  • EFSA. Opinion of the Scientific Panel on additives and products or substances used in animal feed on the request from the European Commission on the safety of use of colouring agents in animal nutrition. EFSA J. 2005;291:1–40.
  • Brizio P, Benedetto A, Righetti M, et al. Astaxanthin and canthaxanthin (xanthophyll) as supplements in rainbow trout diet: in vivo assessment of residual levels and contributions to human health. J Agric Food Chem. 2013;61:10954–10959.
  • Choubert G, de la Noüe J, Blanc JM. Apparent digestibility of canthaxanthin in rainbow trout: effect of dietary fat level, antibiotics and number of pyloric caeca. Aquaculture. 1991;99:323–329.
  • Choubert G, Storebakken T. Digestibility of astaxanthin and canthaxanthin in rainbow trout as affected by dietary concentration, feeding rate and water salinity. Ann Zootech. 1996; 45:445–453.
  • Niu J, Li CH, Liu YJ, et al. Dietary values of astaxanthin and canthaxanthin in Penaeus monodon in the presence and absence of cholesterol supplementation: effect on growth, nutrient digestibility and tissue carotenoid composition. Br J Nutr. 2012;108:80–91.
  • Surai AP, Surai PF, Steinberg W, et al. Effect of canthaxanthin content of the maternal diet on the antioxidant system of the developing chick. Br Poult Sci. 2003;44:612–619.
  • Surai PF. The antioxidant properties of canthaxanthin and its potential effects in the poultry eggs and on embryonic development of the chick. Part 1. Worlds Poult Sci J. 2012;68:465–476.
  • Surai PF. The antioxidant properties of canthaxanthin and its potential effects in the poultry eggs and on embryonic development of the chick. Part 2. Worlds Poult Sci J. 2012;68:717–726.
  • Rosa AP, Scher A, Sorbara JO, et al. Effects of canthaxanthin on the productive and reproductive performance of broiler breeders. Poult Sci. 2012;91:660–666.
  • Sujak A, Gabrielska J, Milanowska J, et al. Studies on canthaxanthin in lipid membranes. Biochim Biophys Acta. 2005;1712:17–28.
  • Koller M, Muhr A, Braunegg G. Microalgae as versatile cellular factories for valued products. Algal Res. 2014;6:52–63.
  • Mourelle ML, Gómez CP, Legido JL. The potential use of marine microalgae and Cyanobacteria in cosmetics and thalassotherapy. Cosmetics. 2017; 4:46.
  • Eid SY, El-Readi MZ, Wink M. Carotenoids reverse multidrug resistance in cancer cells by interfering with ABC-transporters. Phytomedicine. 2012;19:977–978.
  • Braun R, Farré E, Schurr U, et al. Effects of light and circulation clock on growth and chlorophyll accumulation of Nannochloropsis gaditana (Eustigmatophyte). J Phycol. 2014; 50:515–525.
  • Mishra VK, Bacheti RK, Husen A. 2011. Medicinal uses of chlorophyll: A critical overview. In: Le H, Salcedo E, editors. Chlorophyll: structure, function and medicinal uses. Hauppauge (NY): Nova Science Publishers; 2011. p. 177–196.
  • McGee H. On food and cooking. The science and lore of the kitchen. New York: Scribner; 2004.
  • Chlorophyll [cited 2019 Jan 09]. Available from: https://en.wikipedia.org/wiki/Chlorophyll
  • Kakhia TI. Dyes, Colors & Pigments. 2015. Available from: http://tarek.kakhia.org.
  • Durmaz Y. Vitamin E (α-tocopherol) production by the marine microalgae Nannochloropsis oculata (Eustigmatophyceae) nutrient limitation. Aquaculture. 2007;272:711–722.
  • Goh LP, Loh SP, Fatimah MY, et al. Bioaccessibility of carotenoids and tocopherols in marine Microalgae, Nannochloropsis sp. and Chaetoceros sp. Malays J Nutr. 2009;15:77–86.
  • Liu C-P, Lin L-P. Morphology and eicosapentaenoic acid production by Monodus subterraneus UTEX 151. Micron. 2005;36:545–550.
  • Spolaore P, Joannis-Cassan C, Duran E, et al. Commercial applications of microalgae. J Biosci Bioeng. 2006;101:87–96.
  • Fukusho K. Biology and mass production of the rotifer Brachiolnus plicatilis. Int J Aguatic Fish Technol. 1989;1:232–240.
  • Yúfera M, Navarro N. Population dynamics on the rotifer Brachionus plicatilis cultured in non-limiting food consumption. Hydrobiologia. 1995;313-314:399–405.
  • Kostopolou V, Vadstein O. Growth performance of the rotifer Brachiolnus plicatilis, B. “Nevada” and B. “Cayman” under different food concentrations. Aquaculture. 2007; 273:449–458.
  • Campaña-Torres AL, Martínez-Córdova LR, Martínez-Porchas M, et al. Productive response of Nannochloropsis oculata, cultured in different media and their efficiency as food for the rotifer Brachionus rotundiformis. FHYTON. 2012;81:45–50.
  • Ferreira M, Coutinho P, Seixas P, et al. Enriching rotifers with “premium” microalgae. Nannochloropsis gaditana. Mar Biotechnol. 2009;11:585–595.
  • Bae JB, Hur SB. Selection of suitable species of Chlorella, Nannochloris, and Nannochloropsis in high- and low-temperature seasons for mass culture of the rotifer Brachionus plicatilis. Fish Aquat Sci. 2011;14:323–332.
  • Fui CF, Cancerini SY, Shapawi R, et al. Comparison of Nannochloropsis oculata productions cultivated in two different systems: outdoor Red Tilapia (Oreochromis sp.) culture tank and indoor pure culture. Pertanika J Trop Agric Sci. 2018;41:1523–1531.
  • Chen HS, Li SS, Huang R, et al. Conditional production of a functional fish growth hormone in the transgenic line of Nannochloropsis oculata (Eustigmatophyceae). J Phycol. 2008;44:768–776.
  • Patterson GW, Tsitsa-Tzardis E, Wikfors GH, et al. Sterols of Eustigmatophyceae. Lipids. 1994; 29:661–664.
  • Mercer EI, London RA, Kent IS, et al. Sterols, sterol esters and fatty acids of Botrydium granulatum, Tribonema aequale and Monodus subterraneus. Phytochem. 1974;13:845–852.
  • Sanjeewa KKA, Fernando IPS, Samarakoon KW, et al. Anti-inflammatory and anti-cancer activities of sterol rich fraction of cultured marine microalga Nannochloropsis oculata. Algae. 2016;31:277–287.
  • Suen Y, Hubbard JS, Holzer G, et al. Total lipid production of the green algal genus Nannochloropsis sp. QII under different nitrogen regimes. J Phycol. 1987;23:289–296.
  • Volkman JK, Barrett SM, Dunstan GA, et al. C30-C32 alkyl diols and unsaturated alcohols in microalgae of class Eustigmatophyceae. Org Geochem. 1992;18:131–138.
  • Ristić-Medić D, Vučić V, Takić M, et al. Polyunsaturated fatty acids in health and disease. J. Serb. Chem. Soc. 2013;78:1269–1289.
  • Honoré E, Barhanin J, Attali B, et al. External blockade of the major cardiac delayed-rectifier K + channel (Kv1.5) by polyunsaturated fatty acids. Proc Natl Acad Sci. 1994;91:1937–1941.
  • Simopoulos AP. Omega-3 fatty acids in health and disease and in growth and development. Am J Clin Nutr. 1991;54:438–463.
  • Herbaut C. Omega-3 and health. Rev Médic Bruxelles. 2006;27:S355–S360.
  • Landmark K, Alm CS. Alpha-linolenic acid, cardiovascular disease and sudden death. Tidsskr Nor Laegeforen. 2006;126:2792–2794.
  • Reiffel JA, McDonald A. Antiarrhythmic effects of omega-3 fatty acids. Am J Cardiol. 2006;98:50i–60i.
  • Kruger MC, Horrobin DF. Calcium metabolism, osteoporosis and essential fatty acids: a review. Prog Lipid Res. 1997;36:131–151.
  • Pilatova J. The Potential Use of the Eustigmatophyceae in the Production of Biofuels [master’s thesis]. Praha: Charles University; 2013.
  • Seto A, Wang HL, Hesseltine CW. Culture conditions affect eicasapentanoic acid content of Chlorella minutissima. J Amer Oil Soc. 1984;61:891–894.
  • Sukenik A, Carmeli Y, Berner T. Regulation of fatty acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. J Phycol. 1989;25:686–692.
  • Rebolloso-Fuentes MM, Navarro-Pérez A, Garcia-Camacho F, et al. Biomass nutrient profiles of the microalga Nannochloropsis. J Agric Food Chem. 2001;49:2966–2972.
  • Safafar H, Michael ZH, Møller P, et al. High-EPA biomass from Nannochloropsis salina cultivated in a flat-panel photo-bioreactor on a process water-enriched growth medium. Mar Drugs. 2016;14:144.
  • Neumann UF, Derwenskus A, Gille S, et al. Bioavailability and safety of nutrients from the microalgae Chlorella vulgaris, Nannochloropsis oceanica and Phaeodactylum tricornutum in C57BL/6 mice. Nutrients. 2018;10:965.
  • Hodgson PA, Henderson RJ, Sargent JR, et al. Patterns of variation in the lipid class and fatty acid composition of Nannochloropsis oculata (Eustigmatophyceae) during batch culture. J Appl Phycol. 1991;3:169–181.
  • Sukenik A, Carmeli Y. Lipid synthesis and fatty acid composition in Nannochloropsis sp. (Eustigmatophyceae) grown in a light-dark cycle. J Phycol. 1990;469:463–469.
  • Sukenik A. Ecophysiological considerations in the optimization of eicosapentanoic acid production by Nannochloropsis sp. (Eustigmatophyceae). Biores Technol. 1991;35:263–269.
  • Cohen Z. Production potential of eicosapentaenoic acid by Monodus subterraneus. J Am Oil Chem Soc. 1994;71:941–945.
  • Cohen Z. Monodus subterraneus. In: Cohen Z, editor. Chemicals from microalgae. London: CRC Press; 1999. p. 25–40.
  • Zou N, Zang C, Cohen Z, et al. Production of cell mass and eicosapentanoic acid (EPA) inultrahigh cell density cultures of Nannochloropsis sp. (Eustigmatophyceae). Eur J Phycol. 2000;35:122–133.
  • Xuecheng XNZ. Effect of temperature, light intensity and pH on the growth and fatty acid compositions of Ellipsoidion sp. J Ocean Univ Qingdao. 2001;4:013–023.
  • Hu H, Gao K. Optimization of growth and fatty acid composition of a unicellular marine picoplankton, Nannochloropsis sp., with enriched carbon sources. Biotechnol Lett. 2003; 25:421–425.
  • Tonon T, Harvey D, Larson TR, et al. Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochem. 2002;61:15–24.
  • Xu F, Hu H, Cong W, et al. Growth characteristics and eicosapentaenoic acid production by Nannochloropsis sp. in mixotrophic conditions. Biotechnol Lett. 2004;26:51–53.
  • Converti A, Casazza AA, Ortiz EY, et al. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process: Process Intensific. 2009;48:1146–1151.
  • Hoffmann M, Marxen K, Schulz R, et al. TFA and EPA productivities of Nannochloropsis salina influenced by temperature and nitrate stimuli in turbidostatic controlled experiments. Mar Drugs. 2010;8:2526–2545.
  • Pal D, Khozin-Goldberg I, Cohen Z, et al. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Appl Microbiol Biotechnol. 2011;90:1429–1441.
  • Lin Q, Gu N, Li G, et al. Effects of inorganic carbon concentration on carbon formation, nitrate utilization, biomass and oil accumulation of Nannochloropsis oculata CS 179. Biores Technol. 2012;111:353–359.
  • Recht L, Zarka A, Boussiba S. Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Appl Microbiol Biotechnol. 2012;94:1495–1503.
  • Simionato D, Sforza E, Corteggiani Carpinelli E, et al. Acclimation of Nannochloropsis gaditana to different illumination regimes: effects on lipids accumulation. Biores Technol. 2011;102:6026–6032.
  • Arudchelvam Y, Nirmalakhandan N. Energetic optimization of algal lipid production in bubble columns: Part 1: Evaluation of gas sparging. Biomass Bioenergy. 2012;46:757–764.
  • Arudchelvam Y, Nirmalakhandan N. Energetic optimization of algal lipid production in bubble columns: Part II: Evaluation of CO2 enrichment. Biomass Bioenergy. 2012;46:765–772.
  • Iwai M, Hori K, Sasaki-Sekimoto Y, et al. Manipulation of oil synthesis in Nannochloropsis strain NIES-2145 with a phosphorus starvation-inducible promoter from Chlamydomonas reinhardtii. Front Microbiol. 2015;6:912.
  • Falkowski PG. Potential strategies for regulating the flux of carbon into specific chemical classes of algae. In: Ramos, J Jones MC, editors. Polysaccharides from microalgae: A new agroindustry. Proceedings of the International Workshop DUML. Beaufort (NC); 1988. p. 83–91.
  • Chatuverdi R, Uppalapati SR, Alamsjash MA, et al. Isolation of quizalofop-resistant mutants of Nannochloropsis oculata (Eustigmatophyceae) with high eicosapentanoic acid following N-methyl-N-nitrosourea-induced random mutagenesis. J Appl Phycol. 2004;16:135–144.
  • Zhang J, Liu S, Sun X, et al. Fatty acid composition analyses of DCMU resistant mutants of Nannochloropsis oculata (Eustigmatophyceae). J Ocean Univ Qindao. 2003;2:63–68.
  • Cañavate JP, Armada I, Hachero-Cruzado I, et al. Interspecific variability in phosphorus induced lipid remodelling among marine eukaryotic phytoplankton. New Phytol. 2017;213:700–713.
  • Dolch LJ, Rak C, Perin G, et al. A palmitic acid elongase affects eicosapentaenoic acid and plastidial monogalactosyldiacylglycerol levels in Nannochloropsis. Plant Physiol. 2017;173:742–759.
  • Nobusawa T, Hori K, Mori H, et al. Differently localized lysophosphatidic acid acyltransferases crucial for triacylglycerol biosynthesis in the oleaginous alga Nannochloropsis. Plant J. 2017;90:547–559.
  • Iwamoto H, Sato S. Production of EPA by freshwater unicellular algae. J Amer Oil Chem Soc. 1986;63:434–440.
  • Hu Q, Hu Z, Zvi C, et al. Enhancement of eicosapentaenoic acid (EPA) and J-linolenic acid (GLA) production by manipulating algal density of outdoor cultures of Monodus subterraneus (Eustigmatophyta) and Spirulina platensis (Cyanobacteria). Eur J Phycol. 1997;32:81–86.
  • Vazhappilly R, Chen F. Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth. J Amer Oil Chem Soc. 1998;75:393–397.
  • Volkman JK, Barrett SM, Blackburn SI. Fatty acids and hydrocy fatty acids in three species of freshwater eustigmatophytes. J Phycol. 1999;35:1005–1012.
  • Xu N, Zhang X, Fan X, et al. Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. (Eustigmatophyta). J Appl Phycol. 2001;13:463–469.
  • Khozin-Goldberg I, Didi-Cohen S, Shayakhmetova I, et al. Biosynthesis of eicosapentaenoic acid (EPA) in the freshwater eustigmatophyte Monodus subterraneus (Eustigmatophyceae) 1. J Phycol. 2002;38:745–756.
  • Khozin-Goldberg I, Cohen Z. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochem. 2006;67:696–701.
  • Iliev I, Petkov G, Lukavsky J, et al. The alga Trachydiscus minutus (Pseudostaurastrum minutum): growth and composition. Gen Appl Plant Physiol. 2010;36:222–231.
  • Rezanka T, Petránková M, Cepák V, et al. Trachydiscus minutus, a new biotechnological source of eicosapentaenoic acid. Folia Microbiol (Praha). 2010;55:265–269.
  • Gigova L, Ivanova N, Gacheva G, et al. Response of trachydiscus minutus (xanthophyceae) to temperature and light(1). J Phycol. 2012; 48:85–93.
  • Krienitz L, Wirth M. The high content of polyunsaturated fatty acids in Nannochloropsis limnetica (Eustigmatophyceae) and its implication for food web interactions, freshwater aquaculture and biotechnology. Limnol - Ecol Manag Inland Waters. 2006;36:204–210.
  • Roncarati A, Meluzzi A, Acciarri S, et al. Fatty acid composition of different microalgae strains (Nannochloropsis sp., Nannochloropsis oculata (Droop) Hibberd, Nannochloropsis atomus Butcher and Isochrysis sp.) according to the culture phase and carbon dioxide concentration. J World Aquaculture Soc. 2004;35:401–411.
  • Cepák V, Přibyl P, Kohoutková J, et al. Optimization of cultivation conditions for fatty acid composition and EPA production in the eustigmatophycean microalga Trachydiscus minutus. J Appl Phycol. 2014;26:181–190.
  • Jo MJ, Hur SB. Growth and nutritional composition of Eustigmatophyceae Monodus subterraneus and Nannochloropsis oceanica in autotrophic and mixotrophic culture. Ocean Polar Res. 2015;37:61–71.
  • Khozin-Goldberg I, Boussiba S. Concerns over the reporting of inconsistent data on fatty acid composition for microalgae of the genus Nannochloropsis (Eustigmatophyceae). J Appl Phycol. 2011;23:933–934.
  • Ma XN, Chen TP, Yang B, et al. Lipid production from Nannochloropsis. Mar Drugs. 2016;14:61.
  • Volkman JK, Brown MR, Dunstan GA, et al. The biochemical composition of marine microalgae from the class Eustigmatophyceae. J Phycol. 1993;29:69–78.
  • Volkman JK, Barrett SM, Blackburn SI, et al. Microalgal biomarkers: a review of recent research developments. Org Geochem. 1998;29:1163–1179.
  • Gelin F, Volkman JK, de Leeuw JW, et al. Mid-chain hydroxy long-chain fatty-acids in microalgae from genus Nannochloropsis. Phytochemistry. 1997;46:641–646.
  • Sukenik A. Production of eicosapentaenoic acid by the marine eustigmatophyte Nannochloropsis. In: Cohen Z, editor. Chemicals from microalgae. London: CRC Press; 1999. p. 41–56.
  • Boussiba S, Vonshak A, Cohen Z, et al. Lipid and biomass production by the halotolerant microalga Nannochloropsis salina. Biomass. 1987;12:37–47.
  • Chiu SY, Chien YK, Ming TT, et al. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour Technol. 2009;100:833–838.
  • Chi Y, Chen F, Takiguchi Y. Effect of nitrogen source on biomass and lipid production of a marine Microalga, Nannochloropsis oceanica IMET1. GSC. 2015;05:101–106.
  • Zhang JJian, Wan LLin, Xia S, et al. Morphological and spectrometric analyses of lipids accumulation in a novel oleaginous microalga, Eustigmatos cf. polyphem (Eustigmatophyceae). Bioprocess Biosyst Eng. 2013;36:1125–1130.
  • Lam MK, Lee KT. Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv. 2012;30:673–690.
  • Doan TTY, Sivaloganathan B, Obbard JF. Screening of marine microalgae for biodiesel feedstock. Biomass Bioenergy. 2011;35:2534–2544.
  • Moazami N, Ashori A, Ranjbar R, et al. Large-scale biodiesel production using microalgae biomass of Nannochloropsis. Biomass Bioenergy. 2012;39:449–453.
  • Dinesh Kumar S, Santhanam P, Grace FLG. The techniques in microalgae bioremediation and algal co-product development. In: Santharaman P, Begum A, Pachiappan P, editors. Basic and applied phytoplankton biology. Singapore: Springer Nature; 2018. p. 191–210.
  • Jinkerson RE, Radakovits R, Posewitz MC. Genomic insights from the oleaginous model alga Nannochloropsis gaditana. Bioengineered. 2013;4:37–43.
  • Radakovits R, Jinkerson RE, Fuerstenberg SI, et al. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat Commun. 2012;3:686.
  • Vieler A, Wu G, Tsai C-H, et al. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLоS Genet. 2012;8:1–25.
  • Wang D, Ning K, Li J, et al. Nannochloropsis genomes reveal evolution of microalgal oleaginous traits. PLоS Genet. 2014;10:1–13.
  • Li N, Xu C, Li-Beisson Y, et al. Fatty acid and lipid transport in plant cells. Trends Plant Sci. 2016;21:145–158.
  • Poliner E, Panchy N, Newton L, et al. Transcriptional coordination of physiological responses in Nannochloropsis oceanica CCMP1779 under light/dark cycles. Plant J. 2015;83:1097–1113.
  • Alboresi A, Perin G, Vitulo N, et al. Light remodels lipid biosynthesis in Nannochloropsis gaditana by modulating carbon partitioning between organelles. Plant Physiol. 2016;171:2468–2482.
  • Kilian O, Benemann CSE, Niyogi KK, et al. High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci USA. 2011;108:21265–21269.
  • Wang Q, Lu Y, Xin Y, et al. Genome editing of model oleaginous microalgae Nannochloropsis spp. By CRISPR/Cas9. Plant J. 2016;88:1071–1081.
  • Wei L, Xin Y, Wang Q, et al. RNAi-based targeted gene-knockdown in the model oleaginous microalgae Nannochloropsis oceanica. Plant J. 2017;89:1236–1250.
  • Tibbetts SM, Milley JE, Lall SP. Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J Appl Phycol. 2015;27:1109–1119.
  • Stolz P, Obermayer B. Manufacturing microalgae for skin care. Cosmet Toilet. 2005;120:99–106.
  • Pachiappan P, Santhanam P, Begum A, et al. 2018 An introduction to plankton. In: Santharaman P, Begum A, Pachiappan P, editors. Basic and applied phytoplankton biology. Singapore: Springer Nature; 2018. p. 1–24.
  • Letsiou S, Kalliampakao K, Gardikis K, et al. Skin protective effects of Nannochloropsis gaditana extract on H2O2-stressed human dermal fibroblasts. Front Mar Sci. 2017;4:221.
  • Mourelle L, Gόmes CP, Martin MC, et al. Microalgae and Thermalism: Perspectives. J Jpn Soc Balneol Climatol Phys Med. 2014;5:537–538.
  • Goh SH, Yusoff FM, Loh SP. A comparison of the antioxidant properties and total phenolic content in a diatom, Chaetoceros sp. and a green microalga, Nannochloropsis sp. J Agric Sci. 2010;2:123–130.
  • Wolf BM, Niedzwiedzki DM, Magdaong NCM, et al. Characterization of a newly isolated freshwater Eustigmatophyte alga capable of utilizing far-red light as its sole light source. Photosyn Res. 2018;135:177–189.
  • Yurchenko T, Ševčíková T, Přibyl P, et al. A gene transfer event suggests a long-term partnership between eustigmatophyte algae and a novel lineage of endosymbiotic bacteria. ISME J. 2018;12:2163–2175.
  • Levine I, Fleurence J, editors. Microalgae in health and disease prevention. London UK: Elsevier; 2018.
  • Karthikaichamy A, Deore P, Rai V, et al. Time for multiple extraction methods in proteomics? A comparison of three protein extraction methods in the eustigmatophyte alga Microchloropsis gaditana CCMP526. OMICS. 2017;21:678–683.
  • Nice EC. Challenges for omics technologies in the implementation of personalized medicine. Expert Rev Prec Medic Drug Develop. 2018;3:229–231.
  • Kagan ML, Matulka RA. Safety assessment of the microalgae Nannochloropsis oculata. Toxicol Rep. 2015;2:617–623.
  • Rai SV, Rajashekhar M. Effect of twelve species of marine phytoplankton on larval survival and development of the mosquito Culex quinquefasciatus. Int J Mar Sci. 2015;57:1–5.
  • Balakrishnan S, Santhanam P, Manikam N, et al. A method of bio-efficacy potential of microalgae for the control of vector mosquitoes. In: Santharaman P, Begum A, Pachiappan P, editors. Basic and applied phytoplankton biology. Singapore: Springer Nature; 2018. p. 109–122.
  • Matsumoto H, Shioji N, Hamasaki A, et al. Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Appl Biochem Biotechnol. 1995;51:681.
  • Matsumoto H, Shioji N, Hamasaki A, et al. Basic study on optimization of raceway-type algal cultivator. J Chem Eng Japan / JCEJ. 1996;29:541–543.
  • Biondi N, Bassi N, Chini Zittelli G, et al. Nannochloropsis sp. F&M-M24: oil production, effect of mixing on productivity and growth in an industrial wastewater. Environ Prog Sustainable Energy. 2013; 32:846–854.
  • McGinn PJ, Dickinson KE, Bhatti S, et al. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosyn Res. 2011;109:231–247.
  • Lu Y, Xu J. Phytohormones in microalgae: a new opportunity for microalgal biotechnology? Trends Plant Sci. 2015;20:273–282.