747
Views
0
CrossRef citations to date
0
Altmetric
Articles

Circulatory leukotriene changes during bone healing following osteotomies prepared with Er:YAG laser and piezosurgery: an animal study

, , , , &
Pages 325-330 | Received 29 Aug 2018, Accepted 29 Jan 2019, Published online: 05 Apr 2019

References

  • Romeo U, Del Vecchio A, Palaia G. Bone damage induced by different cutting instruments-an in vitro study. Braz Dent J. 2009;20:162–168.
  • de Mello DE, Pagnoncelli MR, Munin E. Comparative histological analysis of bone healing of standardized bone defects performed with the Er:YAG laser and steel burs. Lasers Med Sci. 2008;23:253–260.
  • Papadaki M, Doukas A, Farinelli AW. Vertical ramus osteotomy with Er:YAG laser: a feasibility study. Int J Oral Maxillofac Surg. 2007;36:1193–1197.
  • Steubinger S, von Rechenberg B, Zeilhofer FH, et al. Er:YAG laser osteotomy for removal of impacted teeth: clinical comparison of two techniques. Lasers Surg Med. 2007;39:583–588.
  • Yoshino T, Aoki A, Oda S, et al. Long-term histologic analysis of bone tissue alteration and healing following Er:YAG laser irradiation compared to electrosurgery. J Periodontol. 2009;80:82–92.
  • Gabric-Panduric D, Bago I, Katanec D, et al. Comparison of Er:YAG laser and surgical drill for osteotomy in oral surgery: an experimental study. J Oral Maxillofac Surg.. 2012;70:2515–2621.
  • Gabric-Panduric D, Bago-Juric I, Music S, et al. Morphological and ultrastructural comparative analysis of bone tissue after Er:YAG laser and surgical drill osteotomy. Photomed Laser Surg. 2014;32:401–408.
  • Sasaki MK, Aoki A, Ichinose S, et al. Ultrastructural analysis of bone tissue irradiated by Er:YAG laser. Lasers Surg Med. 2002;31:322–332.
  • Sasaki MK, Aoki A, Ichinose S, et al. Scanning electron microscopy and Fourier transformed infrared spectroscopy analysis of bone removal using Er:YAG and CO2 lasers. J Periodontol. 2002;73:643–652.
  • Bergenstock M, Min W, Simon MA, et al. A comparison between the effects of acetaminophen and celecoxib on bone fracture healing in rats. J Orthop Trauma. 2005;19:717–723.
  • Gerstenfeld CL, Al-Ghawas M, Alkhiary YM, et al. Selective and nonselective cyclooxygenase-2 inhibitors and experimental fracture-healing. Reversibility of effects after short-term treatment. J Bone Joint Surg Am. 2007;89:114–125.
  • Simon AM, O'Connor JP. Dose and time-dependent effects of cyclooxygenase-2 inhibition on fracture-healing. J Bone Joint Surg Am. 2007;89:500–511.
  • Manigrasso BM, O’Connor PJ. Accelerating fracture healing by manipulating arachidonic acid metabolism. ORS. 2006;31:0070.
  • O'Connor JP, Manigrasso MB, Kim BD, et al. Fracture healing and lipid mediators. Bonekey Rep. 2014;3:517.
  • Byrum SR, Goulet LJ, Griffiths JR, et al. Role of the 5-lipoxygenase-activating protein (FLAP) in murine acute inflammatory responses. J Exp Med. 1997; 185:1065–1075.
  • Akino K, Mineda T, Mori N, et al. Attenuation of cysteinyl leukotrienes induces human mesenchymal stem cell differentiation. Wound Repair Regen. 2006;14:343–349.
  • Gabric D, Blashkovic M, Gjorgievska E, et al. Evaluation of bone healing after osteotomies prepared with Er:YAG laser in contact and non-contact modes and piezosurgery—an animal study. Int J Oral Maxillofac Surg. 2016;74:18–28.
  • Perhavec T, Gorkic A, Bracun D, et al. A method for rapid measurement of laser ablation rate of hard dental tissue. Opt Laser Technol. 2009;41:397–402.
  • Baraba A, Miletic I, Krmek JS, et al. Ablative potential of the erbium-doped yttrium aluminium garnet laser and conventional handpieces: a comparative study. Photomed Laser Surg. 2009;27:921–927.
  • Mladenov M, Tanska V, Vitkovska T, et al. Evidence for the influence of vitamin C on age- and heat exposure-dependent deterioration of biochemical function in rat's liver and kidney. J Therm Biol. 2008;33:431–436.
  • Hadzi-Petrushev N, Mladenov K, Sopi R, et al. Enhanced lipid peroxidation and inflammation during heat exposure in rats of different ages: role of α-tocopherol. J Therm Biol. 2013;38:474–479.
  • Hadzi-Petrushev N, Stojkovski V, Mitrov D, et al. D-galactose induced inflammation lipid peroxidation and platelet activation in rats. Cytokine 2014; 69:150–315.
  • Mitrov D, Hadzi-Petrushev N, Stojkovski V, et al. Influence of chronic chromium exposition on the processes of lipid peroxidation inflammation and platelet activation in rats. J Biol Regul Homeost Agents. 2014;28:531–535.
  • Mitrokhin V, Gorbacheva L, Mladenov M, et al. IL-2 induced NF-κB phosphorylation upregulates cation nonselective conductance in human cardiac fibroblasts. Int Immunopharmacol. 2018;64:170–174.
  • Wixted JJ, Fanning P, Rothkopf I, et al. Arachidonic acid, eicosanoids, and fracture repair. J Orthop Trauma. 2010;24:539–542.
  • Wixted JJ, Fanning PJ, Gaur T, et al. Enhanced fracture repair by leukotriene antagonism is characterized by increased chondrocyte proliferation and early bone formation: a novel role of the cysteinyl LT-1 receptor. J Cell Physiol. 2009; 221:31–39.
  • Lin H-N, O’Connor JP. Immunohistochemical localization of key arachidonic acid metabolism enzymes during fracture healing in mice. PLoS One. 2014;9:e88423.
  • Cottrell JA, OʼConnor JP. Pharmacological inhibition of 5-lipoxygenase accelerates and enhances fracture-healing. J Bone Joint Surg. 2009;91:2653–2665.
  • Chen Y-C, Lin Y-H, Wang S-H, et al. Monitoring tissue inflammation and responses to drug treatments in early stages of mice bone fracture using 50 MHz ultrasound. Ultrasonics. 2014;54:177–186.
  • Szczeklik W, Gorka J, Kozka M. Leukotrienes biosynthesis in vascular surgery patients during perioperative period. J Physiol Pharm. 2014;65:705–708.