1,510
Views
5
CrossRef citations to date
0
Altmetric
Articles

Single nucleotide polymorphism analysis in plastomes of eight Catharanthus roseus cultivars

, , , &
Pages 419-428 | Received 19 Oct 2018, Accepted 04 Feb 2019, Published online: 17 Feb 2019

References

  • Schmelzer G, Gurib-Fakim A, Arroo R, et al. Plant Resources of Tropical Africa 11(1): Medicinal plants 1. Wageningen(NL): PROTA Foundation; 2008.
  • Balaji H. Versatile therapeutic effects of Vinca rosea Linn. Int J Pharm Sci Health Care. 2014;1:59–76.
  • Ziegler J, Facchini PJ. Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol. 2008;59:735–769.
  • Heijden R, Jacobs D, Snoeijer W, et al. The Catharanthus roseus alkaloids: pharmacognosy and biotechnology. Curr Med Chem. 2004;11:607–628.
  • Guirimand G, Courdavault V, Lanoue A, et al. Strictosidine activation in Apocynaceae: towards a “nuclear time bomb”?. BMC Plant Biol. 2010;10:182–201.
  • Pasquier E, Kavallaris M. Microtubules: a dynamic target in cancer therapy. IUBMB Life. 2008;60:165–170.
  • Nejat N, Valdiani A, Cahill D, et al. Ornamental exterior versus therapeutic interior of Madagascar Periwinkle (Catharanthus roseus): the two faces of a versatile herb. Sci World J. 2015;2015:1. [cited 2018 Nov 15]; Article ID 982412[19 pages].
  • Idrees M, Naeem M, Khan MM. The superiority of cv ‘rosea’over cv ‘alba’of periwinkle (Catharanthus roseus L.) in alkaloid production and other physiological attributes. Turk J Biol. 2010;34:81–88.
  • Bhutkar MA, Bhise SB. Comparative studies on antioxidant properties of Catharanthus rosea and Catharanthus alba. Int J Pharm Tech Res. 2011;3:1551–1556.
  • Sharma V, Chaudhary S, Srivastava S, et al. Characterization of variation and quantitative trait loci related to terpenoidindole alkaloid yield in a recombinant inbred line mapping population of Catharanthus roseus. J Genet. 2012; 91:1–21.
  • Sharma R, Joshi A, Maloo SR, et al. Assessment of genetic finger printing using molecular marker in plants: a review. Sci Res Impact. 2012; 1:29–36.
  • Raza S, Shoaib MW, Mubeen H. Genetic Markers: importance, uses and applications. Int J Sci Res. 2016;6:2250–3153.
  • Mammadov J, Aggarwal R, Buyyarapu R, et al. SNP markers and their impact on plant breeding. Int J Plant Genomics. 2012;2012:1. ‏
  • Henry RJ. Plant genotyping II: SNP technology. Wallingford (UK): CABI Publishing; 2008.
  • Ku C, Chung WC, Chen LL, et al. The complete chloroplast genome sequence of Madagascar periwinkle Catharanthus roseus (L.) G. Don: chloroplast genome evolution, molecular marker identification, and phylogenetic implications in asterids. PLoS One. 2013;8:e68518.
  • Sabir JS, Arasappan D, Bahieldin A, et al. Whole mitochondrial and chloroplast genome SNP analysis of nine date palm cultivars reveals chloroplast heteroplasmy and close phylogenetic relationships among cultivars. PLoS One. 2014;9:e94158. ‏ ‏
  • Shaw RK, Acharya L, Mukherjee AK. Assessment of genetic diversity in a highly valuable medicinal plant Catharanthus roseus using molecular markers. Crop Breed Appl Biotechnol. 2009;9:52–59.
  • El-Domyati FM, Ramadan AM, Gadalla NO, et al. Identification of molecular markers for flower characteristics in Catharanthus roseus producing anticancer compounds. Life Sci J. 2012;9:5949–5960.
  • Gupta K, Pandey-Rai S, Srivastava S, et al. Construction of genetic linkage map of the medicinal and ornamental plant Catharanthus roseus. J Genet. 2007;86:259–268.
  • Shokeen B, Choudhary S, Sethy NK, et al. Development of SSR and gene-targeted markers for construction of a framework linkage map of Catharanthus roseus. Ann Bot. 2011;108:321–336.
  • Lal S, Mistry KN, Shah SD, et al. Genetic diversity assessment in nine cultivars of Catharanthus roseus from Central Gujarat (India) through RAPD, ISSR and SSR markers. J Biol Res. 2011;1:667–675.
  • Mishra RK, Gangadhar BH, Yu JW, et al. Development and characterization of EST based SSR markers in Madagascar periwinkle ('Catharanthus roseus') and their transferability in other medicinal plants. Plant Omics. 2011;4:154.
  • Salama IM, Ali GM. Genetic variant detected by RAPD-PCR and ISSR in Catharanthus roseus (L.) cells exposed to low doses of gamma rays. Egypt J Radiat Sci Appl. 2016;29:85–101.
  • Agarwal M, Shrivastava N, Padh H. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep. 2008;27:617–631.
  • Pérez-Zamorano B, Vallebueno-Estrada M, Martínez González J, et al. Organellar genomes from a ∼5,000-year-old archaeological maize sample are closely related to NB genotype. Genome Biol Evol. 2017;9:904–915.
  • Petit RJ, Duminil J, Fineschi S, et al. Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol. 2004;14:689–701.
  • Whittall JB, Syring J, Parks M, et al. Finding a (pine) needle in a haystack: chloroplast genome sequence divergence in rare and widespread pines. Mol Ecol. 2010;19:100–114.
  • Doorduin L, Gravendeel B, Lammers Y, et al. The complete chloroplast genome of 17 individuals of pest species Jacobaea vulgaris: SNPs, microsatellites and barcoding markers for population and phylogenetic studies. DNA Res. 2011;18:93–105.
  • McPherson H, Van der Merwe M, Delaney SK, et al. Capturing chloroplast variation for molecular ecology studies: a simple next generation sequencing approach applied to a rainforest tree. BMC Ecol. 2013;13:8.
  • Melodelima C, Lobréaux S. Complete Arabis alpina chloroplast genome sequence and insight into its polymorphism. Meta Gene. 2013;1:65–75.
  • Zhu Q, Gao P, Liu S, et al. Comparative analysis of single nucleotide polymorphisms in the nuclear, chloroplast, and mitochondrial genomes in identification of phylogenetic association among seven melon (Cucumis melo L.) cultivars. Breed Sci. 2016;66:711–719.
  • McCauley DE. The use of chloroplast DNA polymorphism in studies of gene flow in plants. Trends Ecol Evol (Amst). 1995;10:198–202.
  • Yan M, Xiong Y, Liu R, et al. The application and limitation of universal chloroplast markers in discriminating East Asian Evergreen Oaks. Front Plant Sci. 2018;9:569.
  • Zhang H, Mittal N, Leamy LJ, et al. Back into the wild-Apply untapped genetic diversity of wild relatives for crop improvement. Evol Appl. 2017;10:5–24.
  • Skuza L, Filip E, Szućko I. Chapter 26. Use of organelle markers to study genetic diversity in soybean. In: Board J, editor. A comprehensive survey of international soybean research. Genetics, Physiology, Agronomy and Nitrogen Relationships. London (UK): Intech Open; 2013. p. 553–581.
  • Parks MB. Plastome phylogenomics in the genus Pinus using massively parallel sequencing technology. [dissertation]. Corvallis (OR): Oregon State University; 2011.
  • Zhang H, Li C, Miao H, et al. Insights from the complete chloroplast genome into the evolution of Sesamum indicum L. PLoS One. 2013;8:e80508.
  • Horváth EM, Peter SO, Joët T, et al. Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant Physiol. 2000;123:1337–1350.
  • Amos W. Even small SNP clusters are non-randomly distributed: is this evidence of mutational non-independence?. Proc Biol Sci. 2010;277:1443–1449.
  • Charlesworth B, Nordborg M, Charlesworth D. The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genet Res. 1997;70:155–174.
  • Tian D, Wang Q, Zhang P, et al. Single-nucleotide mutation rate increases close to insertions/deletions in eukaryotes. Nature. 2008;455:105–108.
  • Chen JQ, Wu Y, Yang H, et al. Variation in the ratio of nucleotide substitution and indel rates across genomes in mammals and bacteria. Mol Biol Evol. 2009;26:1523–1531.
  • Tilney-Bassett RAE, Birky CW. The mechanism of the mixed inheritance of chloroplast genes in Pelargonium: evidence from gene frequency distributions among the progeny of crosses. Theor Appl Genet. 1981;60:43–53.
  • Lax AR, Vaughn KC, Duke SO, et al. Structural and physiological studies of a plastome cotton mutant with slow sorting out. J Hered. 1987;78:147–152. 1987
  • Chiu WL, Stubbe W, Sears BB. Plastid inheritance in Oenothera: organelle genome modifies the extent of biparental plastid transmission. Curr Genet. 1988;13:181–189.
  • Johnson LB, Palmer JD. Heteroplasmy of chloroplast DNA in Medicago. Plant Mol Biol. 1989;12:3–11.
  • Chat J, Decroocq S, Decroocq V, et al. A case of chloroplast heteroplasmy in kiwifruit (Actinidiadeliciosa) that is not transmitted during sexual reproduction. J Hered. 2002;93:293–300.
  • García MA, Nicholson EH, Nickrent DL. Extensive intraindividual variation in plastid rDNA sequences from the holoparasite Cynomorium coccineum (Cynomoriaceae). J Mol Evol. 2004;58:322–332.
  • Hansen AK, Escobar LK, Gilbert LE, et al. Paternal, maternal, and biparental inheritance of the chloroplast genome in Passiflora (Passifloraceae): implications for phylogenetic studies. Am J Bot. 2007;94:42–46.
  • Chesser RK. Heteroplasmy and organelle gene dynamics. Genetics. 1998;150:1309–1327.