11,187
Views
41
CrossRef citations to date
0
Altmetric
Reviews

Marker-assisted selection and gene pyramiding for resistance to bacterial leaf blight disease of rice (Oryza sativa L.)

ORCID Icon, ORCID Icon, , , , , , , , & show all
Pages 440-455 | Received 17 Dec 2018, Accepted 14 Feb 2019, Published online: 23 Feb 2019

References

  • Chukwu SC, Rafii MY, Ramlee SI, et al. Bacterial leaf blight resistance in rice: a review of conventional breeding to molecular approach. Mol Biol Rep. 2019. doi:10.1007/s11033-019-04584-2
  • Roy S, Banerjee A, Bhattacharya S. Chapter 1. Omics-based approaches for rice improvement. In: Barh D, editor. OMICS applications in crop science. New York (NY): CRC Press; 2013.
  • Zhang J, Li X, Jiang G, et al. Pyramiding of Xa7 and Xa21 for the improvement of disease resistance to bacterial blight in hybrid rice. Plant Breed. 2006;125:600–605.
  • Miah G, Rafii MY, Ismail MR, et al. A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. IJMS. 2013;14:22499–22528.
  • Oladosu Y, Rafii MY, Magaji U, et al. Genotypic and phenotypic relationship among yield components in rice under tropical conditions. Biomed Res Int. 2018;2018:1.
  • Mannan S, Hameed S. A molecular tool for differenciation of Xanthomonas oryzae pathovars isolated. Gene. 2013;51:1–7.
  • Akhtar S, Bhat MA, Wani SA, et al. Marker assisted selection in rice. J. Phytol. 2010;2:66–81.
  • Hummel AW, Doyle EL, Bogdanove AJ. Addition of transcription activator-like effector binding sites to a pathogen strain-specific rice bacterial blight resistance gene makes it effective against additional strains and against bacterial leaf streak. New Phytol. 2012;195:883–893.
  • Gill US, Lee S, Mysore KS. Host versus nonhost resistance: distinct wars with similar arsenals. Phytopathol. 2015;105:580–587.
  • Vikal Y, Bhatia D. Genetics and genomics of bacterial blight resistance in rice. In: Li JQ, editor. Advances in international rice research. London (UK): InTech; 2017. p. 175–213.
  • Busungu C, Taura S, Sakagami J-I, et al. Identification and linkage analysis of a new rice bacterial blight resistance gene from XM14, a mutant line from IR24. Breed Sci. 2016;66:636–645.
  • Cheema KK, Grewal NK, Vikal Y, et al. A novel bacterial blight resistance gene from Oryza nivara mapped to 38 Kb region on chromosome 4L and transferred to Oryza sativa L. Genet Res. 2008;90:397–407.
  • Tian D, Wang J, Zeng X, et al. The rice TAL effector-dependent resistance protein Xa10 triggers cell death and calcium depletion in the endoplasmic reticulum. Plant Cell. 2014;26:497–515.
  • Wang C, Zhang X, Fan Y, et al. Xa23 is an executor R protein and confers broad spectrum disease resistance in rice. Mol Plant. 2015;8:290–302.
  • Liu Q, Yuan M, Zhou Y, et al. A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell Environ. 2011;34:1958–1969.
  • Pandey MK, Rani NS, Sundaram RM, et al. Improvement of two traditional Basmati rice varieties for bacterial blight resistance and plant stature through morphological and marker-assisted selection. Mol Breed. 2013;31:239–246.
  • Yoshimura S, Yamanouchi U, Katayose Y, et al. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA. 1998;95:1663–1668.
  • Kurata N, Yamazaki Y. Oryzabase. An integrated biological and genome information database for rice. Plant Physiol. 2006;140:12–17.
  • Xiang Y, Cao Y, Xu C, et al. Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26. Theor Appl Genet. 2006;113:1347–1355.
  • Wang W, Zhai W, Luo M, et al. Chromosome landing at the bacterial blight resistance gene Xa4 locus using a deep coverage rice BAC library. Mol Genet Genomics. 2001;265:118–125.
  • Petpisit V, Khush GS, Kauffman HE. Inheritance of resistance to bacterial blight in rice. Crop Sci. 1977;17:551–554.
  • Sidhu GS, Khush GS, Mew TW. Genetic analysis of bacterial blight resistance in seventy-four cultivars of rice, Oryza sativa L. Theor Appl Genet. 1978;53:105–111.
  • Lee KS, Khush GS. Genetic analysis of resistance to bacterial blight, Xanthomonas oryzae pv. oryzae rice. Rice Genet Newsl. 2000;17:72–78.
  • Singh K, Vikal Y, Singh S, et al. Mapping of bacterial blight resistance gene xa8 using microsatellite markers. Rice Genet Newsl. 2002;19:94–96.
  • Ogawa T, Yamamoto T, Khush GS, et al. Near-isogenic lines as international differentials for resistance to bacterial blight of rice. Rice Genet Newsl. 1988;5:106–109.
  • Ogawa T, Lin L, Tabien RE, et al. A new recessive gene for resistance to bacterial blight of rice. Rice Genet Newsl. 1987;4:98–100.
  • Ogawa T. Monitoring race distribution and identification of genes for resistance to bacterial leaf blight. In: Khush GS, editor. Rice genetics III. Proceedings of the 3rd International Rice Genetics Symposium; 1995 Oct 16–20. Manila, Philippines: International Rice Research Institute; 1996. p. 456–459.
  • Song WY, Wang GL, Chen LL, et al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science. 1995;279:1084–1086.
  • Zhang Q, Wang CL, Zhao KJ, et al. The effectiveness of advanced rice lines with new resistance gene Xa23 to rice bacterial blight. Rice Genet Newsl. 2001;18:71.
  • Khush GS, Angeles ER. A new gene for resistance to race 6 of bacterial blight in rice, Oryza sativa. Rice Genet Newsl. 1999;16:92–93.
  • Lee KS, Rasabandith S, Angeles ER, et al. Inheritance of resistance to bacterial blight in 21 cultivars of rice. Phytopathology. 2003;93:147–152.
  • Gu K, Yang B, Tian D, et al. R gene expression induced by a type-III effector triggers disease resistance in rice. Nature. 2005;435:1122–1125.
  • Tan GX, Ren X, Weng Q, et al. Mapping of a new resistance gene to bacterial blight in rice line introgressed from O. officinalis. J Genet Genomics. 2004;31:724–729.
  • Wang CT, Wen GS, Lin XH, et al. Identification and fine mapping of the new bacterial blight resistance gene, Xa31(t), in rice. Eur J Plant Pathol. 2009;23:235–240.
  • Zheng CK, Wang CL, Yu YJ, et al. Identification and molecular mapping of Xa32(t), a novel resistance gene for bacterial blight (Xanthomonas oryzae pv. oryzae) in rice. Acta Agron Sin. 2009;35:1173–1180.
  • Natarajkumar P, Sujatha K, Laha GS, et al. Identification of a dominant bacterial blight resistance gene from Oryza nivara and its molecular mapping. Rice Genet Newsl. 2010;25:54–56.
  • Korinsak S, Sriprakhon S, Sirithanya P, et al. Identification of microsatellite markers (SSR) linked to a new bacterial blight resistance gene xa33(t) in rice cultivar ‘Ba7’. Maejo Int J Sci Technol. 2009;3:235–247.
  • Chen W, Yao X, Cai K, et al. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol Trace Elem Res. 2011;142:67–76.
  • Guo SB, Zhang DP, Lin XH. Identification and mapping of a novel bacterial blight resistance gene Xa35(t) originated from Oryza minuta. Sci Agric Sin. 2010;43:2611–2618.
  • Miao LL, Wang CL, Zheng CK, et al. Molecular mapping of a new gene for resistance to rice bacterial blight. Sci Agric Sin. 2010;43:3051–3058.
  • Bhasin H, Bhatia D, Raghuvanshi S, et al. New PCR-based sequence tagged site marker for bacterial blight resistance gene Xa38 in rice. Mol Breed. 2012;30:607–611.
  • Zhang F, Zhuo D-L, Zhang F, et al. Xa39, a novel dominant gene conferring broad-spectrum resistance to Xanthomonas oryzae pv. oryzae in rice. Plant Pathol. 2015;64:568–575.
  • Kim SM, Suh JP, Qin Y, et al. Identification and fine-mapping of a new resistance gene, Xa40, conferring resistance to bacterial blight races in rice (Oryza sativa L.). Theor Appl Genet. 2015;128:1933–1943.
  • Hutin M, Sabot F, Ghesquière A, et al. A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. Plant J. 2015;84:694–703.
  • Arif IA, Bakir MA, Khan HA, et al. A brief review of molecular techniques to assess plant diversity. Int J Mol Sci. 2010;11:2079–2096.
  • Yang HB, Kang WH, Nahm SH, et al. Methods for developing molecular markers. In: Current technologies in plant molecular breeding, Chapter 2, Dordrecht: Springer; 2015, p. 15–50.
  • Andersen JR, Lübberstedt T. Functional markers in plants. Trends Plant Sci. 2003;8:554–560.
  • Govindaraj M, Vetriventhan M, Srinivasan M. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genet Res Int. 2015;2015:1–14.
  • Jonah PM, Bello LL, Lucky O, et al. The importance of molecular markers in plant breeding programmes. Glob J Sci Front Res. 2011;11:5–12.
  • Ewing E. In vacuo glycation of enzymes: a novel approach for increasing enzyme stability [dissertation]. Canada: University of Ottawa; 2006.
  • Sattari A, Fakheri B, Noroozi M. Blast resistance in rice□: a review of breeding and biotechnology. Int J Agric Crop Sci. 2014;7:329–333.
  • Sorrells ME, La-Rota M, Bermudez-Kandianis CE, et al. Comparative DNA sequence analysis of wheat and rice genomes. Genome Res. 2003;13:1818–1827.
  • Jena KK, Mackill DJ. Molecular markers and their use in marker-assisted selection in rice. Crop Sci. 2008;48:1266–1276.
  • Ramalingam J, Savitha P, Alagarasan G, et al. Functional marker assisted improvement of stable cytoplasmic male sterile lines of rice for bacterial blight resistance. Front Plant Sci. 2017;8:1–9.
  • Swapna L, Khurana R, Vijaya-Kumar S, et al. Pollen-specific expression of Oryza sativa indica pollen allergen gene (OSIPA) promoter in rice and arabidopsis transgenic systems. Mol Biotechnol. 2011;48:49–59.
  • Ashkani S, Rafi MY, Sariah M, et al. Analysis of simple sequence repeat markers linked with blast disease resistance genes in a segregating population of rice (Oryza sativa). Genet Mol Res. 2011;10:1345–1355.
  • Ates D, Aldemir S, Alsaleh A, et al. A consensus linkage map of lentil based on DArT markers from three RIL mapping populations. PLoS One. 2018;13:e0191375.
  • Mulualem T, Bekeko Z. Advances in quantitative trait loci, mapping and importance of markers assisted selection in plant breeding research. Int J Plant Breed Genet. 2016;10:58–68.
  • Basavaraj SH, Singh VK, Singh A, et al. Marker-assisted improvement of bacterial blight resistance in parental lines of Pusa RH10, a superfine grain aromatic rice hybrid. Mol Breed. 2010;26:293–305.
  • Dwivedi S, Tripathi RD, Srivastava S, et al. Growth performance and biochemical responses of three rice (Oryza sativa L.) cultivars grown in fly-ash amended soil. Chemosphere. 2007;67:140–151.
  • Servin B, Martin OC, Mézard M, et al. Toward a theory of marker-assisted gene pyramiding. Genetics. 2004;168:513–523.
  • Perumalsamy S, Bharani M, Sudha M, et al. Functional marker-assisted selection for bacterial leaf blight resistance genes in rice (Oryza sativa L.). Plant Breed. 2010;129:400–406.
  • He B, Huang X, Li D, et al. The cDNA cloning of a novel bacterial blight-resistance gene ME137. Acta Biochim Biophys Sin. 2013;45:422–424.
  • Shanti ML, Shenoy VV, Devi GL, et al. Marker-assisted breeding for resistance to bacterial leaf blight in popular cultivar and parental lines of hybrid rice. J Plant Pathol. 2010;92:495–501.
  • Collard BCY, Mackill DJ. Conserved DNA-derived polymorphism (CDDP): a simple and novel method for generating DNA markers in plants. Plant Mol Biol Rep. 2009;27:558–562.
  • McCouch SR, Kochert G, Yu ZH, et al. Molecular mapping of rice chromosomes. Theor Appl Genet. 1988;76:815–829.
  • McCouch SR, Teytelman L, Xu Y, et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res. 2002;9:199–207.
  • International Rice Genome Sequencing Project (IRGSP): BiOS; 2019. Available from https://rgp.dna.affrc.go.jp/IRGSP/
  • Dai L, Liu X, Xiao Y, et al. Recent advances in cloning and characterization of disease resistance genes in rice. J Integr Plant Biol. 2007;49:112–119.
  • Chu Z, Yuan M, Yao J, et al. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev. 2006;20:1250–1255.
  • Sun X, Cao Y, Yang Z, et al. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J. 2004;37:517–527.
  • Litt M, Luty JA. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet. 1989;44:397
  • Narina SS, Orgeix CA, Sayre BL, et al. Optimization of PCR conditions to amplify microsatellite loci in the bunchgrass lizard (Sceloporus slevini) genomic DNA. BMC Res Notes. 2011;4:26.
  • Park YJ, Lee JK, Kim NS. Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity and germplasm classification of minor crops. Molecules. 2009;14:4546–4569.
  • Candit R, Hubbel SP. Abundance and DNA sequence of two base repeat regions in tropical genomes. Genome. 1991;34:66–71.
  • Maroof MS, Biyashev RM, Yang GP, et al. Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA. 1994;91:5466–5470.
  • Wu KS, Tanksley SD. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet. 1993;241:225–235.
  • Ashkani S, Rafii MY, Shabanimofrad M, et al. Molecular progress on the mapping and cloning of functional genes for blast disease in rice (Oryza sativa L.): current status and future considerations. Crit Rev Biotechnol. 2016;36:353–367.
  • Akkaya MS, Bhagwat AA, Cregan PB. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics. 1992;132:1131–1139.
  • Panaud O, Chen X, McCouch SR. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet. 1996;252:597–607.
  • Temnykh S, Park WD, Ayres N, et al. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet. 2000;100:697–712.
  • Temnykh S, DeClerck G, Lukashova A, et al. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 2001;11:1441–1452.
  • Gramene [Internet]: a comparative resource for plants; 2019. Available from www.gramene.org
  • McCouch SR, Chen X, Panaud O, et al. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Mol Biol. 1997;35:89–99.
  • Chen X, Temnykh S, Xu Y, et al. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor Appl Genet. 1997;95:553–567.
  • Mackill DJ, Zhang Z, Redoña ED, et al. Level of polymorphism and genetic mapping of AFLP markers in rice. Genome. 1996;39:969–977.
  • Provan J, Corbett G, Powell W, et al. Chloroplast DNA variability in wild and cultivated rice (Oryza spp.) revealed by polymorphic chloroplast simple sequence repeats. Genome. 1997;40:104–110.
  • Xu W, Virmani SS, Hernandez JE, et al. Genetic diversity in the parental lines and heterosis of the tropical rice hybrids. Euphytica. 2002;127:139–148.
  • Enoki H, Sato H, Koinuma K. SSR analysis of genetic diversity among maize inbred lines adapted to cold regions of Japan. Theor Appl Genet. 2002;104:1270–1277.
  • Ullah I, Jamil S, Iqbal MZ, et al. Detection of bacterial blight resistance genes in basmati rice landraces. Genet Mol Res. 2012;11:1960–1966.
  • Chen H, Wang S, Xing Y, et al. Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley. Proc Natl Acad Sci USA. 2003;100:2544–2549.
  • Neeraja CN, Maghirang-Rodriguez R, Pamplona A, et al. A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor Appl Genet. 2007;115:767–776.
  • Xu K, Deb R, Mackill DJ. A microsatellite marker and a codominant PCR-based marker for marker-assisted selection of submergence tolerance in rice. Crop Sci. 2004;44:248–253.
  • Wang Z, Zou Y, Li X, et al. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell. 2006;18:676–687.
  • Cordeiro GM, Christopher MJ, Henry RJ, et al. Identification of microsatellite markers for fragrance in rice by analysis of the rice genome sequence. Mol Breed. 2002;9:245–250.
  • Collard BC, Mackill DJ. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B: Biol Sci. 2008;363:557–572.
  • Das G, Rao GJN. Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar. Front Plant Sci. 2015;6:1–18.
  • Poczai P, Varga I, Laos M, et al. Advances in plant gene-targeted and functional markers: a review. Plant Methods. 2013;9:6.
  • Okporie EO, Chukwu SC, Onyishi GC. Phenotypic recurrent selection for increase yield and chemical constituents of maize (Zea mays L.). World Appl Sci J. 2013;21:994–999.
  • Ross-Ibarra J, Morrell PL, Gaut BS. Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci USA. 2007;104:8641–8648.
  • Kumar S, Rao M. Conventional and molecular breeding for bacterial leaf blight and blast resistance in rice. Res Rev J Ecol. 2014;3:1–3.
  • Dossa GS, Sparks A, Cruz CV, et al. Decision tools for bacterial blight resistance gene deployment in rice-based agricultural ecosystems. Front Plant Sci. 2015;6:1–5.
  • Singh BD. Plant breeding: principles and methods. New Delhi: Kalyani Publishers; 2015.
  • Ashkani S, Rafii MY, Rahim HA, et al. Genetic dissection of rice blast resistance by QTL mapping approach using an F 3 population. Mol Biol Rep. 2013;40:2503–2515.
  • Collard BCY, Jahufer MZZ, Brouwer JB, et al. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica. 2005;142:169–196.
  • Wang GL, Paterson AH. Assessment of DNA pooling strategies for mapping of QTLs. Theor Appl Genet. 1994;88:355–361.
  • DeVicente MC, Tanksley SD. QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics. 1993;134:585–596.
  • Tanksley SD. Mapping polygenes. Annu Rev Genet. 1993;27:205–233.
  • Gelli M, Konda AR, Liu K, et al. Validation of QTL mapping and transcriptome profiling for identification of candidate genes associated with nitrogen stress tolerance in sorghum. BMC Plant Biology. 2017;17:1–18.
  • Du Q, Gong C, Wang Q, et al. Genetic architecture of growth traits in Populus revealed by integrated quantitative trait locus (QTL) analysis and association studies. New Phytol. 2016;209:1067–1082.
  • Manly KF, Cudmore RH, Jr, Meer JM. Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome. 2001;12:930–932.
  • Melchinger AE, Utz HF, Schön CC. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics. 1998;149:383–403.
  • Doerge RW. Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet. 2002;3:43–52.
  • Hospital F. Challenges for effective marker-assisted selection in plants. Genetica. 2009;136:303–310.
  • Ejeta G. Breeding for Striga resistance in sorghum: exploitation of an intricate host–parasite biology. Crop Sci. 2007;47:S-216.
  • Ji Z, Shi J, Zeng Y, et al. Application of a simplified marker-assisted backcross technique for hybrid breeding in rice. Biologia (Poland). 2014;69:463–468.
  • Pradhan SK, Nayak DK, Mohanty S, et al. Pyramiding of three bacterial blight resistance genes for broad-spectrum resistance in deepwater rice variety, Jalmagna. Rice. 2015;8:19.
  • Xu Y, Crouch JH. Marker-assisted selection in plant breeding: from publications to practice. Crop Sci. 2008;48:391–407.
  • Chukwu SC, Okporie EO, Onyishi GC, et al. Application of diallel analyses in crop improvement. Agric Biol J North Am. 2016;7:95–106.
  • Bishwas N, Sharma M, Hasan A, et al. Improvement of rice crop by Marker-assisted Backcross method. Magnesium. 2016;8:2.
  • Das G, Patra JK, Baek KH. Insight into MAS: a molecular tool for development of stress resistant and quality of rice through gene stacking. Front Plant Sci. 2017;8:985.
  • Amagai Y, Watanabe N, Kuboyama T. Genetic mapping and development of near-isogenic lines with genes conferring mutant phenotypes in Aegilops tauschii and synthetic hexaploid wheat. Euphytica. 2015;205:859–868.
  • Hasan MM, Rafii MY, Ismail MR, et al. Marker-assisted backcrossing: a useful method for rice improvement. Biotechnol Biotechnol Equip. 2015;29:237–254.
  • Tuberosa R, Forster BP, Ellis RP, et al. The development and application of molecular markers for abiotic stress tolerance in barley. J Exp Bot. 2000;51:19–27.
  • Pinta W, Toojinda T, Thummabenjapone P, et al. Pyramiding of blast and bacterial leaf blight resistance genes into rice cultivar RD6 using marker assisted selection. Afr J Biotechnol. 2013;12:4432–4438.
  • Rajpurohit D, Kumar R, Kumar M, et al. Pyramiding of two bacterial blight resistance and a semidwarfing gene in Type 3 Basmati using marker-assisted selection. Euphytica. 2011;178:111–126.
  • Michelmore RW, Paran I, Kesseli RV. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA. 1991;88:9828–9832.
  • Sharma P, Dubey RS. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul. 2005;46:209–221.
  • Singh S, Sidhu JS, Huang N, et al. Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor Appl Genet. 2001;102:1011–1015.
  • Joseph M, Gopalakrishnan S, Sharma RK, et al. Combining bacterial blight resistance and Basmati quality characteristics by phenotypic and molecular marker-assisted selection in rice. Mol Breed. 2004;13:377–387.
  • Sundaram RM, Vishnupriya MR, Biradar SK, et al. Marker assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica. 2008;160:411–422.
  • Pradhan SK, Nayak DK, Pandit E, et al. Incorporation of bacterial blight resistance genes into lowland rice cultivar through marker-assisted backcross breeding. Phytopathology. 2016;106:710–718.
  • Arunakumari K, Durgarani CV, Satturu V, et al. Marker-assisted pyramiding of genes conferring resistance against bacterial blight and blast diseases into Indian rice variety MTU1010. Rice Sci. 2016;23:306–316.
  • Castro AJ, Capettini F, Corey AE, et al. Mapping and pyramiding of qualitative and quantitative resistance to stripe rust in barley. Theor Appl Genet. 2003;107:922–930.
  • Hittalmani S, Parco A, Mew TV, et al. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet. 2000;100:1121–1128.
  • Melchinger AE. Use of molecular markers in breeding for oligogenic disease resistance. Plant Breed. 1990;104:1–19.
  • Huang N, Angeles ER, Domingo J, et al. Pyramiding of bacterial resistance genes in rice: marker aided selection using RFLP and PCR. Theor Appl Genet. 1997;95:313–320.
  • Swamy BPM, Kumar A. Genomics-based precision breeding approaches to improve drought tolerance in rice. Biotechnol Adv. 2013;31:1308–1318.
  • Kelly JD, Miklas PN. The role of RAPD markers in breeding for disease resistance in common bean. Mol Breed. 1998;4:1–11.
  • Jeung JU, Heu SG, Shin MS, et al. Dynamics of Xanthomonas oryzae pv. oryzae populations in Korea and their relationship to known bacterial blight resistance genes. Phytopathology. 2006;96:867–875.
  • Toenniessen GH, O'Toole JC, DeVries J. Advances in plant biotechnology and its adoption in developing countries. Curr Opin Plant Biol. 2003;6:191–198.
  • Arshad HMI, Sahi ST, Atiq M. Appraisal of resistant genes and gene pyramid lines of rice against indigenous pathotypes of Xanthomonas oryzae pv. oryzae in Punjab, Pakistan. Pak J Agric Sci. 2016;53:365–370.