1,188
Views
3
CrossRef citations to date
0
Altmetric
Articles

MicroRNA profiling of patients with sporadic atrial septal defect

, , , , , , , , , , , , & show all
Pages 510-519 | Received 12 Nov 2018, Accepted 05 Mar 2019, Published online: 27 Mar 2019

References

  • Mitchell SC, Korones SB, Berendes HW. Congenital heart disease in 56,109 births. Incidence and natural history. Circulation. 1971;43:323–332.
  • Van der Linde D, Konings EE, Slager MA, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011; 58:2241–2247.
  • Hinton RB. Genetic and environmental factors contributing to cardiovascular malformation: a unified approach to risk. J Am Heart Assoc. 2013 ;[cited 2019 Jan 03]; 2:e000292.
  • Lloyd-Jones D, Adams R, Carnethon M, et al. Heart disease and stroke statistics-2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009; 119:480–486.
  • Geva T, Martins JD, Wald RM. Atrial septal defects. Lancet. 2014; 383:1921–1932.
  • Botto LD, Correa A, Erickson JD. Racial and temporal variations in the prevalence of heart defects. Pediatrics. 2001 ;107:[cited 2019 Jan 03]; E32.
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116:281–297.
  • Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014; 15:509–524.
  • John B, Enright AJ, Aravin A, et al. Human MicroRNA targets. PLoS Biol. 2004 ;2:e363. [cited 2019 Jan 03];
  • Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005; 120:15–20.
  • Shivdasani RA. MicroRNAs: regulators of gene expression and cell differentiation. Blood. 2006; 108:3646–3653.
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136:215–233.
  • Hammond SM. An overview of microRNAs. Adv Drug Deliv Rev. 2015; 87:3–14.
  • Barwari T, Joshi A, Mayr M. MicroRNAs in cardiovascular disease. J Am Coll Cardiol. 2016; 68:2577–2584.
  • Liang Y, Ridzon D, Wong L, et al. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics. 2007;8:166., [cited 2019 Jan 03];
  • Cordes KR, Srivastava D. MicroRNA regulation of cardiovascular development. Circ Res. 2009; 104:724–732.
  • Batkai S, Bar C, Thum T. MicroRNAs in right ventricular remodelling. Cardiovasc Res. 2017; 113:1433–1440.
  • Hagiwara S, Kantharidis P, Cooper ME. MicroRNA as biomarkers and regulator of cardiovascular development and disease. Curr Pharm Des. 2014; 20:2347–2370.
  • Shah P, Bristow MR, Port JD. MicroRNAs in heart failure, cardiac transplantation, and myocardial recovery: Biomarkers with therapeutic potential. Curr Heart Fail Rep. 2017; 14:454–464.
  • Hoelscher SC, Doppler SA, Dreßen M, et al. MicroRNAs: pleiotropic players in congenital heart disease and regeneration. J Thorac Dis. 2017; 9:S64–S81.
  • Smith T, Rajakaruna C, Caputo M, et al. MicroRNAs in congenital heart disease. Ann Transl Med. 2015;3:333 [cited 2019 Jan 03];
  • Wang Y, Du X, Zhou Z, et al. A gain-of-function ACTC1 3'UTR mutation that introduces a miR-139-5p target site may be associated with a dominant familial atrial septal defect. Sci Rep. 2016[Cited 2019 Jan 03].6:25404.
  • Hsu SD, Lin FM, Wu WY, et al. miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. 2011; 39:D163–D169.
  • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000; 25:25–29.
  • Dennis G, Sherman BT, Hosack DA, et al. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4:P3. [cited 2019 Jan 03];
  • Thum T, Catalucci D, Bauersachs J. MicroRNAs: novel regulators in cardiac development and disease. Cardiovasc Res. 2008; 79:562–570.
  • Fabbri M, Bottoni A, Shimizu M, et al. Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA. 2011; 305:59–67.
  • Wang W, Li R, Meng M, et al. MicroRNA profiling of CD3+ CD56+ cytokine-induced killer cells. Sci Rep. 2015;5:9571–9503. [cited 2019 Jan
  • Olson EN. Gene regulatory networks in the evolution and development of the heart. Science. 2006; 313:1922–1927.
  • Sedmera D, Thompson RP. Myocyte proliferation in the developing heart. Dev Dyn. 2011; 240:1322–1334.
  • Sun C, Kontaridis MI. Physiology of cardiac development: from genetics to signaling to therapeutic strategies. Curr Opin Physiol. 2018; 1:123–139.
  • Liang D, Xu X, Deng F, et al. miRNA-940 reduction contributes to human tetralogy of Fallot development. J Cell Mol Med. 2014; 18:1830–1839.
  • Li J, Cao Y, Ma XJ, et al. Roles of miR-1-1 and miR-181c in ventricular septal defects. Int J Cardiol. 2013; 168:1441–1446.
  • Liu N, Bezprozvannaya S, Williams AH, et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008; 22:3242–3254.
  • Chen D, Zhang Z, Meng Y. Systematic tracking of disrupted modules identifies altered pathways associated with congenital heart defects in down syndrome. Med Sci Monit. 2015; 21:3334–3342.
  • Arthur HM, Bamforth SD. TGFbeta signaling and congenital heart disease: insights from mouse studies. Birth Defects Res A Clin Mol Teratol. 2011; 91:423–434.
  • Krishnan A, Samtani R, Dhanantwari P, et al. A detailed comparison of mouse and human cardiac development. Pediatr Res. 2014; 76:500–507.
  • Wang W, Niu Z, Wang Y, et al. Comparative transcriptome analysis of atrial septal defect identifies dysregulated genes during heart septum morphogenesis. Gene. 2016; 575:Pt 1): 303–312.
  • Song Y, Higgins H, Guo J, et al. Clinical significance of circulating microRNAs as markers in detecting and predicting congenital heart defects in children. J Transl Med. 2018[Cited 2019 Jan 3].16:42.
  • Yu K, Ji Y, Wang H, et al. Association of miR-196a2. miR-27a, and miR-499 Polymorphisms with Isolated Congenital Heart Disease in a Chinese Population. Genet Mol Res. 2016[Cited 2019 Jan 3].15.
  • Ventura A, Young AG, Winslow MM, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 2008; 132:875–886.
  • Danielson LS, Park DS, Rotllan N, et al. Cardiovascular dysregulation of miR-17-92 causes a lethal hypertrophic cardiomyopathy and arrhythmogenesis. Faseb J. 2013; 27:1460–1467.
  • Bai Y, Wang J, Morikawa Y, et al. Bmp signaling represses Vegfa to promote outflow tract cushion development. Development. 2013; 140:3395–3402.
  • Kriegel AJ, Liu Y, Fang Y, et al. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol Genomics. 2012; 44:237–244.
  • Zhu S, Cao L, Zhu J, et al. Identification of maternal serum microRNAs as novel non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Clin Chim Acta. 2013; 424:66–72.