1,377
Views
5
CrossRef citations to date
0
Altmetric
Articles

SEE: a novel multi-objective evolutionary algorithm for identifying SNP epistasis in genome-wide association studies

, , &
Pages 529-547 | Received 04 Oct 2018, Accepted 07 Mar 2019, Published online: 25 Mar 2019

References

  • Collins A, Lonjou C, Morton N. Genetic epidemiology of single-nucleotide polymorphisms. Proc Natl Acad Sci USA. 1999;96:15173–15177.
  • Schork NJ, Fallin D, Lanchbury JS. Single nucleotide polymorphisms and the future of genetic epidemiology. Clin Genet. 2001;58:250–264.
  • Schork NJ, Murray SS, Frazer KA, et al. Common vs. rare allele hypotheses for complex diseases. Curr Opin Genet Dev. 2009;19:212–219.
  • Cordell HJ. Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. Hum Mol Genet. 2002;11:2463–2468.
  • Cordell HJ. Detecting gene–gene interactions that underlie human diseases. Nat Rev Genet. 2009;10:392–404.
  • Shang J, Zhang J, Yan S, et al. Performance analysis of novel methods for detecting epistasis. BMC Bioinform. 2011;12:475.
  • Wei WH, Hemani G, Haley CS. Detecting epistasis in human complex traits. Nat Rev Genet. 2014;15:722–733.
  • Mackay TF, Moore JH. Why epistasis is important for tackling complex human disease genetics. Genome Med. 2014;6:42.
  • Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet. 2005;6:95–108.
  • Pearson TA, Manolio TA. How to interpret a genome-wide association study. JAMA. 2008;299:1335–1344.
  • Manolio TA. Genomewide association studies and assessment of the risk of disease. N Engl J Med. 2010;363:166–176.
  • Li J, Humphreys K, Darabi H, et al. A genome-wide association scan on estrogen receptor-negative breast cancer. Breast Cancer Res. 2010;12:R93.
  • Shan J, Mahfoudh W, Dsouza SP, et al. Genome-Wide Association Studies (GWAS) breast cancer susceptibility loci in Arabs: susceptibility and prognostic implications in Tunisians. Breast Cancer Res Treat. 2012;135:715–724.
  • Chen F, Chen GK, Stram DO, et al. A genome-wide association study of breast cancer in women of African ancestry. Hum Genet. 2013;132:39–48.
  • Ritchie MD, Hahn LW, Roodi N, et al. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet. 2001;69:138–147.
  • Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–575.
  • Gyenesei A, Moody J, Laiho A, et al. BiForce Toolbox: powerful high-throughput computational analysis of gene–gene interactions in genome-wide association studies. Nucleic Acids Res. 2012;40: 628–632.
  • Zhu Z, Tong X, Zhu Z, et al. Development of GMDR-GPU for gene-gene interaction analysis and its application to WTCCC GWAS data for type 2 diabetes. PLoS One. 2013;8:e61943.
  • Wang Q, Shi F, Kowalczyk A, et al., editors. GWISFI: a universal GPU interface for exhaustive search of pairwise interactions in case-control GWAS in minutes. In: IEEE International Conference on Bioinformatics and Biomedicine; 2014 Nov 2–5; Belfast, UK; 2014. p. 403–409.
  • Zhang Y, Liu JS. Bayesian inference of epistatic interactions in case-control studies. Nat Genet. 2007;39:1167–1173.
  • Peng T, Du P, Li Y. PBEAM: a parallel implementation of BEAM for genome-wide inference of epistatic interactions. Bioinformation. 2009;3:349–351.
  • Yang C, He Z, Wan X, et al. SNPHarvester: a filtering-based approach for detecting epistatic interactions in genome-wide association studies. Bioinformatics. 2009;25:504–511.
  • Marchini J, Donnelly P, Cardon LR. Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat Genet. 2005;37:413–417.
  • Zhang X, Zou F, Wang W, et al. FastChi: an efficient algorithm for analyzing gene-gene interactions. In: Altman RB, Dunker AK, Hunter L, editors. Pacific Symposium on Biocomputing 2009; 2009 Jan 5–9; Kohala Coast, Hawaii, USA. Stanford University; 2009. p. 528–539. Available from: http://psb.stanford.edu/psb-online/proceedings/psb09/.
  • Wan X, Yang C, Yang Q, et al. BOOST: a fast approach to detecting gene-gene interactions in genome-wide case-control studies. Am J Hum Genet. 2010;87:325–340.
  • Jiang R, Tang W, Wu X, et al. A random forest approach to the detection of epistatic interactions in case-control studies. BMC Bioinform. 2009;10:1–12.
  • Wu TT, Chen YF, Hastie T, et al. Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics. 2009;25:714–721.
  • Schwarz DF, König IR, Ziegler A. On safari to Random Jungle: a fast implementation of random forests for high-dimensional data. Bioinformatics. 2010;26:1752–1758.
  • Yoshida M, Koike A. SNPInterForest: a new method for detecting epistatic interactions. BMC Bioinform. 2011;12:469.
  • Li J, Horstman B, Chen Y. Detecting epistatic effects in association studies at a genomic level based on an ensemble approach. Bioinformatics. 2011;27:i222–i229.
  • Wu Q, Ye Y, Liu Y, et al. SNP selection and classification of genome-wide SNP data using stratified sampling random forests. IEEE Transon Nanobiosci. 2012;11:216–227.
  • Nguyen TT, Huang JZ, Wu Q, et al. Genome-wide association data classification and SNPs selection using two-stage quality-based random forests. BMC Genomics. 2015;16:S5.
  • Wang Y, Liu X, Robbins K, et al. AntEpiSeeker: detecting epistatic interactions for case-control studies using a two-stage ant colony optimization algorithm. BMC Res Notes. 2010;3:117.
  • Aflakparast M, Salimi H, Gerami A, et al. Cuckoo search epistasis: a new method for exploring significant genetic interactions. Heredity. 2014;112:666–674.
  • Jing P-J, Shen H-B. MACOED: a multi-objective ant colony optimization algorithm for SNP epistasis detection in genome-wide association studies. Bioinformatics. 2014;31:634–641.
  • Tuo S, Zhang J, Yuan X, et al. FHSA-SED: two-locus model detection for genome-wide association study with harmony search algorithm. PLoS One. 2016;11:e0150669.
  • Yang CH, Chuang LY, Lin YD. CMDR based differential evolution identify the epistatic interaction in genome-wide association studies. Bioinformatics. 2017;33:2354–2362.
  • Sun Y, Shang J, Liu JX, et al. epiACO – a method for identifying epistasis based on ant colony optimization algorithm. Biodata Min. 2017;10:23.
  • Yuan L, Yuan CA, Huang DS. FAACOSE: a fast adaptive ant colony optimization algorithm for detecting SNP epistasis. Complexity. 2017;2017:1–10.
  • Tuo S, Zhang J, Yuan X, et al. Niche harmony search algorithm for detecting complex disease associated high-order SNP combinations. Sci Rep. 2017;7:11529.
  • Wan X, Yang C, Yang Q, et al. Predictive rule inference for epistatic interaction detection in genome-wide association studies. Bioinformatics. 2010;26:30–37.
  • Burton PR, Clayton DG, Cardon LR, et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447:661–678.
  • Breiman L. Classification and regression trees. New York (NY): Routledge; 1984.
  • Visweswaran S, Wong AKI, Barmada MM. A Bayesian method for identifying genetic interactions. AMIA Annu Symp Proc/AMIA Symp AMIA Symp. 2009;2009:673–677.
  • Cooper GF, Herskovits E. A Bayesian method for the induction of probabilistic networks from data. Mach Learn. 1992;9:309–347.
  • Hoey J. The two-way likelihood ratio (G) test and comparison to two-way chi squared test; 2012. (arXiv preprint arXiv:12064881).
  • Stamatis DH. Essential statistical concepts for the quality professional. Boca Raton (FL): CRC Press; 2012.
  • Sherry ST, Ward MH, Kholodov M, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29:308–311.
  • Peter DA, Grondin MC, Robin J, et al. The Comparative Toxicogenomics Database: update 2013. Nucleic Acids Res. 2011;41:D1104–D1114.
  • Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. In: Hamacher M, Eisenacher M, Stephan C, editors. Data mining in proteomics: from standards to applications. Totowa (NJ): Humana Press; 2011. p. 291–303.