2,404
Views
9
CrossRef citations to date
0
Altmetric
Articles

Review on the biotechnological and nanotechnological potential of the streptophyte genus Klebsormidium with pilot data on its phycoprospecting and polyphasic identification in Bulgaria

, , , , , , , & show all
Pages 559-578 | Received 29 Jan 2019, Accepted 08 Mar 2019, Published online: 03 Apr 2019

References

  • Stoykova P, Stoyneva-Gärtner M, Draganova P. Morphological characterization and phylogenetic analysis of strains from Vischeria/Eustigmatos group with potential industrial utilizations. Biotechnol Biotechnol Equip. 2019.
  • Borowitzka MA. Algal biotechnology. In: Sahoo D, Seckbach J, editors. The Algae World. Dordrecht: Springer; 2015. p. 319–338.
  • Stoyneva-Gärtner M, Uzunov B, Gärtner G, Borisova C, Draganova, Radkova M, Stoykova P & Atanassov, I. Carotenoids in five aeroterrestrial strains from Vischeria/Eustigmatos group: Updating the pigment pattern of Eustigmatophyceae. Biotechnol Biotechnol Equip. 2019. DOI:10.1080/13102818.2019.1573154
  • Stoyneva-Gärtner MP, Stoykova P, Uzunov B. Current bioeconomical interest in stramenopilic eustigmatophytes: a review. Biotechnol Biotechnol Equip. 2019;1–13. Forthcoming.
  • Sharma A, Sharma S, Sharma K, et al. Algae as crucial organisms in advancing nanotechnology: a systematic review. J Appl Phycol. 2016;28:1759–1774.
  • Kim S-K, editor. Handbook of marine macroalgae: biotechnology and applied phycology. Chichester (UK): Wiley; 2011.
  • Mazarassa I, Olsen YS, Mayol E, et al. Rapid growth of seaweed biotechnology provides opportunities for developing nations. Nat Biotechnol. 2013;31:591–592.
  • Sharma N, Sharma P. Industrial and biotechnological applications of algae: A review. JAPB. 2017;1:1–4.
  • Rasul I, Azeem F, Siddique MH, et al. Chapter 8 - Algae biotechnology: a green light for engineered algae. In: Zia KM, Zuber M, Ali M, editors. Algae based polymers, blends, and composites. Chemistry, Biotechnology and Material Sciences. Amsterdam: Elsevier; 2017. p. 301–334.
  • Ettl H, Gärtner G. Syllabus der Boden-, Luft- und Flechtenalgen. Stuttgart: Gustav Fischer; 1995.
  • Ettl H, Gärtner G. Syllabus der Boden-, Luft- und Flechtenalgen. 2. Auflage. Berlin: Springer Spektrum; 2014.
  • Lokhorst GM. Comparative taxonomic studies on the genus Klebsormidium (Charophyceae) in Europe. Cryptogam Stud. 1996;5:1–132.
  • Ryšánek D. Terrestrial algae of the genus Klebsormidium (Streptophyta) in the light of the hypothesis “Everything is everywhere, but the environment selects” [dissertation]. Prague: Charles University; 2016.
  • Karsten U, Herburger K, Holzinger A. Photosynthetic plasticity in the green algal species Klebsormidium flaccidum (Streptophyta) from a terrestrial and a freshwater habitat. Phycologia. 2017;56:213–220.
  • Büdel B, Darienko T, Deutschewitz K, et al. Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol. 2009;57:229–247.
  • Rindi F, Mikhailyuk T, Sluiman H, et al. Phylogenetic relationships in Interfilum and Klebsormidium (Klebsormidiophyceae, Streptophyta). Mol Phylogenet Evol. 2011;58:218–231.
  • Karsten U, Herburger K, Holzinger A. Living in biological soil crust communities of African deserts—physiological traits of green algal Klebsormidium species (Streptophyta) to cope with desiccation, light and temperature gradients. J Plant Physiol. 2016;194:2–12.
  • Zhu H, Li S, Hu Z, et al. Molecular characterization of eukaryotic algal communities in the tropical phyllosphere based on real-time sequencing of the 18S rDNA gene. BMC Plant Biol. 2018;18:365–374.
  • Ryšánek D, Elster J, Kováčik L, et al. Diversity and dispersal capacities of a terrestrial algal genus Klebsormidium (Streptophyta) in polar regions. FEMS Microbiol Ecol. 2016; 92:fiw039.
  • Škaloud P. Variation and taxonomic significance of some morphological features in European strains of Klebsormidium (Klebsormidiophyceae, Streptophyta). Nova Hedw. 2006;83:533–550.
  • Škaloud P, Rindi F. Ecological differentiation of cryptic species within an asexual protist morphospecies: a case study of filamentous green alga Klebsormidium (Streptophyta). J Eukaryot Microbiol. 2013;60:350–362.
  • Civáň P, Foster PG, Embley MT, et al. Analyses of charophyte chloroplast genomes help characterize the ancestral chloroplast genome of land plants. Genome Biol Evol. 2014;6:897–911.
  • Sluiman H, Guihal C, Mudimu O. Assessing phylogenetic affinities and species delimitations in Klebsormidiales (Streptophyta): Nuclear-encoded rDNA phylogenies and its secondary structure models in Klebsormidium, Hormidiella, and Entransia(1). J Phycol. 2008;44:183–195.
  • Turmel M, Otis C, Lemieux C. Tracing the evolution of streptophyte algae and their mitochondrial genome. Genome Biol Evol. 2013;5:1817–1835.
  • Frahm J-P. Epiphytische Massenvorkommen der fädigen Grünalge Klebsormidium crenulatum (Kützing) Lokhorst im Rheinland. Decheniana (Bonn). 1999;152:117–119.
  • Türk R, Gärtner G. Biological soil crusts in the subalpine, alpine, and nival areas in the Alps. In: Belnap J, Lange OL, editors. Biological soil crusts: structure, function and management. Berlin: Springer; 2001. p. 67–73.
  • Lim AS, Lee OM. The distribution of aerial algae and evaluation of algal inhabitation on five stone cultural properties in Gyeonggi-do. Algae. 2008;23:269–276.
  • Rindi F, Guiry MD, López‐Bautista JM. Distribution, morphology and phylogeny of Klebsormidium (Klebsormidiales, Charophyceae) in urban environments in Europe. J Phycol. 2008;44:1529–1540.
  • Uzunov B, Stoyneva MP, Gärtner G. Review of the studies on aero-terrestrial cyanoprokaryotes and algae in Bulgaria with a Checklist of the recorded species. I. Phytol Balc. 2007;13:65–73.
  • Uzunov B, Stoyneva MP, Gärtner G. Review of the studies on aero-terrestrial cyanoprokaryotes and algae in Bulgaria with a Checklist of the recorded species. II. Phytol Balc. 2008;14:11–18.
  • Karsten U, Rindi F. Ecophysiological performance of an urban strain of the aeroterrestrial alga Klebsormidium sp. (Klebsormidiales, Klebsormidiophyceae). Eur J Phycol. 2010;45:426–435.
  • Karsten U, Lütz C, Holzinger A. Ecophysiological performance of the aeroterrestrial green alga Klebsormidium crenulatum (Charophyceae, Streptophyta) isolated from an alpine soil crust with an emphasis on desiccation stress. J Phycol. 2010;46:1187–1197.
  • Holzinger A, Lütz C, Karsten U. Desiccation stress causes structural and ultrastructural alterations in the aeroterrestrial green alga Klebsormidium crenulatum (Klebsormidiophyceae, Streptophyta) isolated from alpine soil crust. J Phycol. 2011; 47:591–602.
  • Karsten U, Holzinger A. Light, temperature and desiccation effects on photosynthetic activity, and drought-induced ultrastructural changes in the green alga Klebsormidium dissectum (Streptophyta) from a high alpine soil crust. Microb Ecol. 2012;63:51–63.
  • Tran TH, Govin A, Guyonnet R, et al. Influence of the intrinsic characteristics of mortars on bifouling by Klebsormidium flaccidum. Int Biodeterior Biodegrad. 2012;70:31–39.
  • Karsten U, Pröschold T, Mikhailyuk T, et al. Photosynthetic performance of different genotypes the green alga Klebsormidium sp. (Streptophyta) isolated from biological soil crusts in the Alps. Algo Stud. 2013;142:45–62.
  • Karsten U, Holzinger A. Green algae in alpine biological soil crust communities: acclimation strategies against ultraviolet radiation and dehydration. Biodivers Conserv. 2014;23:1845–1858.
  • Hallmann C. Biodiversity of terrestrial algal communities from soil and air-exposed substrates using a molecular approach [dissertation]. Göttingen: Georg-August-University School of Science (GAUSS). 2015.
  • Mikhailyuk T, Glaser K, Holzinger A, et al. Biodiversity of Klebsormidium (Streptophyta) from alpine biological soil crusts (Alps, Tyrol, Austria, and Italy). J Phycol. 2015;51:750–767.
  • Ragon M, Fontaine MLC, Moreira D, et al. Different biogeographic patterns of prokaryotes and microbial eukaryotes in epilithic biofilms. Mol Ecol. 2012;21:3852–3868.
  • Drongová Z, Kováčik L. Some soil cyanobacteria and algae of the Záhorská Nížina lowland (Southwest Slovakia). Acta Bot Univ Comenianae. 2011;46:41–48.
  • Tschaikner A. Soil algae and soil algal crusts in the alpine regions of Tyrol (Ötztal, Austria). [dissertation]. Innsbruck: University of Innsbruck; 2008.
  • Stoyneva M, Mancheva A, Gärtner, et al. Are the algae from the uncommon Belogradchik rocks common ones? In: Petrova A, editor. Proceedings of the VII National Conference in Botany; 2011 29-30 September; Sofia. Sofia, Bulgarian Botanical Society; 2012. p. 265–269. Bulgarian.
  • Mancheva AD. [Investigation of aerophytic algae from the natural landmark Belogradchik rocks] [dissertation]. Sofia (Bulgaria): Sofia University “St Kliment Ohridski”; 2013. Bulgarian.
  • Stoyneva MP. Contribution to the knowledge on the biodiversity of hydro- and aerobiontic prokaryotic and eukaryotic algae in Bulgaria [D.Sc.thesis]. Sofia: Sofia University “St Kliment Ohridski”; 2014. Bulgarian.
  • Stevens AE, McCarthy BC, Morgan LV. Metal content of Klebsormidium-dominated (Chlorophyta) algal mats from acid mine drainage waters in Southeastern Ohio. J Torrey Bot Soc. 2001;128:226–233.
  • Novis PM. Taxonomy of Klebsormidium (Klebsormidiales, Charophyceae) in New Zealand streams and the significance of low-pH habitats. Phycologia. 2006;45:293–301.
  • Škaloud P, Lukešová A, Malavasi V, et al. Molecular evidence for the polyphyletic origin of low pH adaptation in the genus Klebsormidium (Klebsormidiophyceae, Streptophyta). Plecevo. 2014;147:333–345.
  • Pierangelini M, Ryšánek D, Lang I, et al. Terrestrial adaptation of green algae Klebsormidium and Zygnema (Charophyta) involves diversity in photosynthetic traits but not in CO2 acquisition. Planta. 2017;246:971–986.
  • Herburger K, Karsten U, Holzinger A. Entransia and Hormidiella, sister lineages of Klebsormidium (Streptophyta), respond differently to light, temperature, and desiccation stress. Protoplasma. 2016;253:1309–1323.
  • Mattox KR. Zoosporogenesis and resistant-cell formation in Hormidium flaccidum. In: Parker BC, Brown Jr RM, editors. Contributions in Phycology. Lawrence Kanes: Allen Press; 1971. p. 137–144.
  • Morison MO, Sheath RG. Response to desiccation stress by Klebsormidium rivulare (Ulotrichales, Chlorophyta) from a Rhode Island stream. Phycologia. 1985;24:129–145.
  • Segečová J, Elster J, Kováčik L. Filamentous green alga Klebsormidium flaccidum as a laboratory model for the study of dormancy. Acta Bot Univ Comen. 2011; 46:49–103.
  • Lee JW, Kim GH. Isolation and characterization of two phototropins in the freshwater green alga, Spirogyra varians (Streptophyta, Zygnematales). Algae. 2017;32:235–244.
  • Hori K, Maruyama F, Fujisawa T, et al. Factors for plant terrestrial adaptation. Nat. Commun. 2014;5:1–9.
  • Becker B, Marin B. Streptophyte algae and the origin of embryophytes. Ann Bot. 2009;103:999–1004.
  • Holzinger A, Pichrtová M. Abiotic stress tolerance of charophyte green algae: new challenges for OMICS techniques. Front Plant Sci. 2016;7:art.678.
  • Colleman A. The role of resting spores and akinetes in chlorophyte survival. In: Fryxell GA, editor, Survival strategies of the algae. Cambridge: Cambridge University Press; 1983. p. 1–22.
  • Uzunov BA, Gärtner G, Stoyneva MP. Notes on the akinete-forming strain of the green alga Klebsormidium dissectum (Streptophyta) from Pirin Mts., Bulgaria. Phyton - Ann Rei Bot. 2012b;52:139–144.
  • Uzunov BA. Aeroterrestrial algae from Pirin Mountain (Bulgaria) [dissertation]. Innsbruck: University of Innsbruck; 2009.
  • Gärtner G, Stoyneva MP, Mancheva AD, et al. A new method in collection and cultivation of aerophytic and endolithic algae. Ber Nat Med Ver Innsbruck. 2010;96:27–34.
  • Uzunov B, Stoyneva M, Mancheva A, et al. [ACUS – the new collection of living aeroterrestrial algae of Sofia University “St. Kliment Ohridski”]. In: Petrova A, editor. Proceedings of the VII National Conference in Botany; 2011 29–30 September; Sofia. Sofia, Bulgarian Botanical Society; 2012. p. 271–274. Bulgarian.
  • Printz H. Die Chaetophoralen der Binnengewässer. Hydrobiologia. 1964;24:1–376.
  • Starmach K. [Chlorophyta III. Zielenice Nitkowate: Ulothrichales, Ulvales, Prasiolales, Sphaeropleales, Cladophorales, Chaetophorales, Trentepohliales, Siphonales, Dichotomosiphonales (with keys for the identification of filamentous green algae mentioned in this volume)]. In: Starmach K, Siemińska J, editors. Flora Słodkowodna Polski. Warszawa-Kraków: PWN; 1972. Polish.
  • Moshkova NA, Gollerbakh MM. Chlоrophyta: Ulotrichophyceae, 1. Ulotrichales. Vol. 10(1). In: Vinogradova KL, editor. [Classification key of the freshwater algae of USSR] Leningrad: Nauka; 1986. Russian.
  • Hindák F. Key to the unbranched filamentous green algae (Ulotrichiniae, Ulotrichales, Chlorophyceae). Bull Slov Bot Spoločnosti SAV. Suppl. 1996;1:1–77.
  • John DM, Whitton BA, Brook AJ, editors. The freshwater algal flora of British Isles. An identification guide to freshwater and terrestrial algae. Cambridge: Cambridge Univeristy Press; 2002.
  • John DM, Whitton BA, Brook AJ, editors. The freshwater algal flora of British Isles. An identification guide to freshwater and terrestrial algae. Second edition. Cambridge: Cambridge Univeristy Press; 2011.
  • et al. White TJ, Bruns TD, Lee SB. Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics, In: Innis MA, Gelfand DH, Sninsky JJ, et al. editors. PCR protocols: a guide to methods and applications. London: Academic Press; 1990. p. 315–322.
  • Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596–1599.
  • Medina JR, Garrote RL. The effect of two cryoprotectant mixtures on frozen surubí surimi. Braz J Chem Eng. 2002;19:419–424.
  • Brayner R, Yéprémian C, Djediat C, et al. Photosynthetic microorganism-mediated synthesis of akaganeite (beta-FeOOH) nanorods. Langmuir. 2009;25:10062–10067.
  • Sicard C, Brayner R, Margueritat J, et al. Nanogold biosynthesis by silica-encapsulated micro-algae: a living biohybrid material. J Mater Chem. 2010;20:9342–9347.
  • Dahoumane AS, Djédiat C, Yéprémian C, et al. Recycling and adaptation of Klebsormidium flaccidum microalgae for the sustained production of gold nanoparticles. Biotechnol Bioeng. 2012;109:284–288.
  • Dahoumane AS, Djédiat C, Yéprémian C, et al. Species selection for the design of gold nanobioreactor by photosynthetic organisms. J Nanopart Res. 2012b;14:883–900.
  • Oberholster P, Cheng P-H, Botha AM, et al. The potential of selected microalgal species for treatment of AMD at different pH values in temperate regions. Water Res. 2014;60:89–92.
  • Liu J, Vanormelingen P, Vyverman W. Fatty acid profiles of four filamentous green algae under varying culture conditions. Biores Technol. 2016;200:1080–1084.
  • Liu J, Danneels B, Vanormelingen P, et al. Nutrient removal from horticultural wastewater by benthic filamentous algae Klebsormidium sp., Stigeoclonium spp. and their communities: From laboratory flask to outdoor Algal Turf Scrubber (ATS). Water Res. 2016;92:61–68.
  • Manoj BS, Chavan M, Ma S, et al. Phycoremediate terrestrial microalgae serve source for bioethanol. Int J Curr Microbiol Appl Sci. 2018;7:3174–3185.
  • Manoj BS, Sushma Chavan M, et al. Western Ghats terrestrial microalgae serve as a source of amylase and antioxidant enzymes. J Pharmacogn Phytochem. 2018;7:1555–1560.
  • Say PJ, Diaz BM, Whitton BA. Influence of zinc on lotic plants. I. Tolerance of Hormidium species to zinc. Freshwater Biol. 1977;7:357–376.
  • Brown LM, Hellebust JA. The contribution of organic solutes to osmotic balance in some green and eustigmatophyte algae. J Phycol. 1980;16:265–270.
  • Say PJ, Whitton BM. Changes in flora down a stream showing a zinc gradient. Hydrobiologia. 1981;76:255–262.
  • Takamura N, Kasai F, Watanabe MM. Effects of Cu, Cd and Zn on photosynthesis of freshwater benthic algae. J Appl Phycol. 1989;1:39–52.
  • Skowrońsky T, Klainowska R, Pawlik-Skowrońska B. [Algae in heavy metal polluted environments]. Kosmos. 2002;51:165–173. Polish
  • Teoh ML, Chu WL, Harvey M, et al. Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic micro algae. J Appl Phycol. 2004;16:421–430.
  • Elster J, Degma P, Kováčik L, et al. Freezing and desiccation injury resistance in the filamentous green alga Klebsormidium from the Antarctic, Arctic and Slovakia. Biologia. 2008;63:839–847.
  • Nagao M, Matsui K, Uemura M. Klebsormidium flaccidum, a charophycean green alga, exhibits cold acclimation that is closely associated with compatible solute accumulation and ultrastructural changes. Plant Cell Environ. 2008;31:872–885.
  • Popper ZA, Michel G, Hervé C, et al. Evolution and diversity of plant cell walls: from Algae to Flowering plants. Annu Rev Plant Biol. 2011;62:567–590.
  • Kaplan F, Lewis LA, Wastian J, et al. Plasmolysis effects and osmotic potential of two phylogenetically distinct alpine strains of Klebsormidium (Streptophyta). Protoplasma. 2012;249:789–804.
  • Gerotto C, Morosinotto T. Evolution of photoprotection mechanisms upon land colonization: evidence of PSBS-dependent NPQ in late Streptophyte algae. Physiol Plant. 2013;149:583–598.
  • Holzinger A, Karsten U. Desiccation stress and tolerance in green algae: consequences for ultrastructure, physiological and molecular mechanisms. Front Plant Sci. 2013;4:art.327.
  • Holzinger A, Kaplan F, Blaas K, et al. Transcriptomics of desiccation tolerance in the streptophyte green alga Klebsormidium reveal a land-plant defense reaction. PLoS One. 2014;9:e110630–e110645.
  • Kitzing C, Pröschold T, Karsten U. UV-induced effects on growth, photosynthetic performance and sunscreen contents in different populations of the green alga Klebsormidium fluitans (Streptophyta) from alpine soil crusts. Microb Ecol. 2014;67:327–340.
  • Mikhailyuk T, Holzinger A, Massalski A, et al. Morphological and ultrastructural aspects of Interfilum and Klebsormidium (Klebsormidiales, Streptophyta) with special reference to cell division and thallus formation. Eur J Phycol. 2014;49:395–412.
  • Herburger K, Holzinger A. Localization and quantification of callose in streptophyte green algae Zygnema and Klebsormidium: correlation with desiccation tolerance. Plant Cell Physiol. 2015;56:2259–2270.
  • Holzinger A, Becker B. Desiccation tolerance in the streptophyte green alga Klebsormidium: the role of phytohormones. Commun Integr Biol. 2015;8:e1059978.
  • Kitzing C, Karsten U. Effects of UV radiation on optimum quantum yield and sunscreen contents in members of the genera Interfilum, Klebsormidium, Hormidiella and Entransia (Klebsormidiophyceae, Streptophyta). Eur J Phycol. 2015;50:279–287.
  • Munk M, Brandão HM, Nowak S, et al. Direct and indirect toxic effects of cotton-derived cellulose nanofibres on filamentous green algae. Ecotoxicol Env Safety. 2015;122:399–405.
  • Ryšánek D, Hrčková K, Škaloud P. Global ubiquity and local endemism of free-living terrestrial protists: phylogeographic assessment of the streptophyte alga Klebsormidium. Mol Phylogenet Evol. 2015;58:218–231.
  • Kondo S, Hori K, Sasaki-Sekimoto Y, et al. Primitive extracellular lipid components on the surface of charophytic alga Klebsormidium flaccidum and their possible pathways as deduced from genomic sequences. Front Plant Sci. 2016;7:art.952.
  • Ohtaka K, Nori K, Kanno Y, et al. Primitive auxin response without TIR1 and Aux/IAA in the charophyte alga Klebsormidium nitens. Plant Physiol. 2017;174(3):1621–1632.
  • De Vries J, Curtis BA, Gould SB, et al. Embryophyte stress signaling evolved in the algal progenitors of land plants. Proc Natl Acad Sci USA. 2018;115:E3471–E3480.
  • Herburger K, Ryan LM, Popper ZA, et al. Localisation and substrate specificities of transglycanases in charophyte algae relate to development and morphology. J Cell Sci. 2018;131:jcs203208. [cited 19 Jan 2019][13p.].
  • Ananieva K, Ananiev ED, Doncheva S, et al. Senescence progression in a single darkened cotyledon depends on the light status of the other cotyledon in Cucurbita pepo (zucchini) seedlings: potential involvement of cytokinins and cytokinin oxidase/dehydrogenase activity. Physiol Plant. 2008;134:609–623.
  • Hodkinson TR, Jones MB, Waldren S, et al. editors. Climate change, ecology and systematics. Cambridge: Cambridge University Press. 2011.
  • Welsh D. Ecological significance of compatible solute accumulation by micro organisms: from single cells to global climate. FEMS Microbiol Rev. 2000; 24:263–290.
  • Yansey PH. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Experim Biol. 2005;208:2819–2830.
  • Burg MB, Ferraris JD. Intracellular organic osmolytes: function and regulation. J Biol Chem. 2008;283:7309–7313.
  • World Health Organization. WHO Model List of Essential Medicines (19th List). 2015 [cited 2019 Jan 19]. Available from: https://www.who.int/medicines/publications/essentialmedicines/EML2015_8-May-15.pdf
  • Khan S, Ahmad N, Ahmad F, et al. Naturally occurring organic osmolytes: from cell physiology to disease prevention. IUBMB Life.. 2010;62:891–895.
  • Juneja A, Ceballos RMI, Murthy GS. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review. Energies. 2013;6:4607–4638.
  • Oren A, Gunde-Cimerman N. Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites?. FEMS Microbiol Lett. 2007;269:1–10.
  • Wada N, Sakamoto T, Matsugo S. Mycosporine-like amino acids and their derivatives as natural antioxidants. Antioxidants. 2015;4:603–646.
  • Bhatia S, Garg A, Sharma K, et al. Mycosporine and mycosporine-like amino acids: a paramount tool against ultra violet irradiation. Phcog Rev. 2011;5:138–146.
  • Choi YH, Yang DJ, Kulkarni A, et al. Mycosporine-like amino acids promote wound healing through focal adhesion kinase (FAK) and mitogen-activated protein kinases (MAP Kinases) signaling pathway in keratinocytes. Mar Drugs. 2015; 3:7055–7066.
  • Chrapusta E, Kaminski A, Duchnik K, et al. Mycosporine-like amino acids: potential health and beauty ingredients. Mar Drugs. 2017;15:326–356.
  • Sinha RP, Singh SP, Häder DP. Database on mycosporines and mycosporine-like amino acids (MAAs) in fungi, cyanobacteria, macroalgae, phytoplankton and animals. J Photochem Photobiol. 2007;89:29–35.
  • Breton G, Danyluk J, Ouellet F, et al. Biotechnological applications of plant freezing associated proteins. Biotechnol Ann Rev. 2000;6:59–101.
  • Pulicherla KK, Ghosh M, Kumar PS, et al. Psychrozymes - the next generation industrial enzymes. J Marine Sci Res Dev. 2011;1:102.
  • Ahanger MA, Akram NA, Ashraf M, et al. Plant responses to environmental stresses-from gene to biotechnology. AoB Plants. 2017;9:plx025.
  • Sørensen I, Pettolino FA, Bacic A, et al. The charophycean green algae provide insights into the early origins of plant cell walls. Plant J. 2011;68:201–211.
  • Andersen R, editor. Algal culturing techniques. Amsterdam: Elsevier Academic Press; 2005.
  • Coombs J, Alston YR, editors. The International Biotechnology Directory. Basingstokes (UK): Palgrave Macmillan; 1993.
  • Holzinger A, Lütz C. Algae and UV irradiation: effects on ultrastructure and related metabolic functions. Micron. 2006;37:190–207.
  • Stoyneva M. Soil algae in museum samples from some Southwest Asia sites. I. Hist Nat Bulg. 2000;12:129–146.
  • Painter T. Carbohydrate polymers in desert reclamation: the potential of microalgal biofertilizers. Carbohydrate Polym. 1993;20:77–86.
  • Win TT, Barone JD, Secundo F, et al. Algal biofertilizers and plant growth stimulants for sustainable agriculture. Ind Biotechnol. 2018;14:203–211.
  • Venkataraman GS. A method of preserving blue-green algae for seeding purposes. J Gen Appl Microbiol. 1961;7:96–98.
  • Venkataraman GS. 1961. The role of blue-green algae in agriculture. Sci Cult. 1961;27:9–13.
  • Venkataraman GS. Algalization. Phykos. 1966;5:164–174.
  • Venkataraman GS. Algal biofertilizers and rice cultivation. Faridabad (India): Today and Tomorrow Printers and Publishers; 1972.
  • Venkataraman GS. Economics and energetics of blue green algal contribution to rice. Curr. Sci. 1981;50:94–96.
  • Venkataraman GS. Blue-green algae for rice production: A manual for its promotion. FAO Soils Bulletin. 1981;46:1–103.
  • Innok S, Chunleuchanon S, Boonkerd N, et al. Cyanobacterial akinete induction and its application as biofertilizer for rice cultivation. J Appl Phycol. 2009;21:737–744.
  • Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev. 2010;14:217–232.
  • Phang S-M, Chu W-L, Rabiei R. Phycoremediation. In: Sahoo D, Seckbach J, editors. The algae world. Dordrecht: Springer; 2015. p. 357–390.
  • Davis AS, Prakash P, Thamaraiselvi K. Nanobioremediation technologies for sustainable environment. In: Prashanthi M, Sundaram R, Jeyaseelan A, editors. Bioremediation and sustainable technologies for cleaner environment, environmental science and engineering. Amsterdam: Springer International Publishing AG; 2017. p. 13–33.
  • Dahoumane S, Jeffryes C, Mechouet M, et al. Biosynthesis of inorganic nanoparticles: A fresh look at the control of shape, size and composition. Bioengineering. 2017; 4:14. 4010014
  • Dastjerdi R, Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces. 2010;79:5–18.
  • Masaroviová E, Král’ová K. Metal nanoparticles in plants. Ecol Chem Eng S. 2013;20:9–22.
  • Dahoumane AS, Yéprémian C, Djédiat C, et al. A global approach of the mechanism involved in the biosynthesis of gold colloids using micro-algae. J Nanopart Res. 2014;16:2607–2624.
  • Silva PC, Mattox KR, Blackwell WH. Jr. The generic name Hormidium as applied to green algae. Taxon. 1972;21:639–645.
  • Rindi F, Ryšánek D, Škaloud P. Problems of epitypification in morphologically simple green microalgae: a case study of two widespread species of Klebsormidium Klebsormidiophyceae, Streptophyta). Fottea. 2017;17:78–88.