1,951
Views
6
CrossRef citations to date
0
Altmetric
Articles

Exploring the capacity of endophytic fungi isolated from medicinal plants for fermentation and phenolics biotransformation of rose oil distillation wastewater

, , &
Pages 651-663 | Received 29 Dec 2018, Accepted 10 Apr 2019, Published online: 08 May 2019

References

  • Kovacheva N, Rusanov K, Atanassov I. Industrial cultivation of oil bearing rose and rose oil production in Bulgaria during 21st century, directions and challenges. Biotechnol Biotechnol Equip. 2010;24:1793–1798.
  • Rusanov K, Garo E, Rusanova M, et al. Recovery of polyphenols from rose oil distillation wastewater using adsorption resins-a pilot study. Planta Med.. 2014;80:1657–1664.
  • Schiber A, Mihalev K, Berardini N, et al. Flavonol glycosides from distilled petals of Rosa damascena Mill. Zeitschrift für Naturforschung C. 2005;60:379–384.
  • Slavov A, Vasileva I, Stefanov L, et al. Valorization of wastes from the rose oil industry. Rev Environ Sci Biotechnol.. 2017;16:309–325.
  • Wedler J, Rusanov K, Atanassov I, et al. A polyphenol-enriched fraction of rose oil distillation wastewater inhibits cell proliferation, migration and TNF-α-induced VEGF secretion in human immortalized keratinocytes. Planta Med. 2016;82:1000–1008.
  • Wedler J, Weston A, Rausenberger J, et al. In vitro modulation of inflammatory target gene expression by a polyphenol-enriched fraction of rose oil distillation waste water. Fitoterapia. 2016;114:56–62.
  • Solimine J, Garo E, Wedler J, et al. Tyrosinase inhibitory constituents from a polyphenol enriched fraction of rose oil distillation wastewater. Fitoterapia. 2016;108:13–19.
  • Aggelis G, Ehaliotis C, Nerud F, et al. Evaluation of white-rot fungi for detoxification and decolorization of effluents from the green olive debittering process. Appl Microbiol Biotechnol. 2002;59:353–360.
  • Aissam H, Penninckx MJ, Benlemlih M. Reduction of phenolics content and COD in olive oil mill wastewaters by indigenous yeasts and fungi. World J Microbiol Biotechnol.. 2007;23:1203–1208.
  • Bevilacqua A, Cibelli F, Raimondo ML, et al. Fungal bioremediation of olive mill wastewater: using a multi-step approach to model inhibition or stimulation. J Sci Food Agric.. 2017;97:461–468.
  • Jaouani A, Sayadi S, Vanthournhout M, et al. Potent fungi for decolourisation of olive oil mill wastewaters. Enzyme Microb Technol. 2003;33:802–809.
  • Morillo J, Antizar-Ladislao B, Monteoliva-Sánchez M, et al. Bioremediation and biovalorisation of olive-mill wastes. Appl Microbiol Biotechnol.. 2009;82:25–39.
  • Dias AA, Fernandes JM, Sousa RMO, et al. Fungal conversion and valorization of winery wastes. In: Mycoremediation and environmental sustainability. Cham: Springer; 2018. p. 239–252.
  • Pant D, Adholeya A. Biological approaches for treatment of distillery wastewater: a review. Bioresour Technol. 2007;98:2321–2334.
  • Mendonça E, Pereira P, Martins A, et al. Fungal biodegradation and detoxification of cork boiling wastewaters. Eng Life Sci.. 2004;4:144–149.
  • Amaral C, Lucas MS, Sampaio A, et al. Biodegradation of olive mill wastewaters by a wild isolate of Candida oleophila. Int Biodeterior Biodegrad. 2012;68:45–50.
  • Ntougias S, Baldrian P, Ehaliotis C, et al. Biodegradation and detoxification of olive mill wastewater by selected strains of the mushroom genera Ganoderma and Pleurotus. Chemosphere. 2012;88:620–626.
  • Robles A, Lucas R, de CG, et al. Biomass production and detoxification of wastewaters from the olive oil industry by strains of Penicillium isolated from wastewater disposal ponds. Bioresour Technol. 2000;74:217–221.
  • Sarris D, Giannakis M, Philippoussis A, et al. Conversions of olive mill wastewater-based media by Saccharomyces cerevisiae through sterile and non-sterile bioprocesses. J Chem Technol Biotechnol.. 2013;88:958–969.
  • Khiralla A, Spina R, Yagi S, et al. Endophytic fungi: occurrence, classification, function and natural products. In: Hughes E, editor. Endophytic fungi: diversity, characterization and biocontrol. Hauppauge (NY): Nova Science Publisher’s Inc.; 2016. p. 1–39
  • Nisa H, Kamili AN, Nawchoo IA, et al. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: a review. Microb Pathog. 2015;82:50–59.
  • Sandhu SS, Kumar S, Aharwal RP, et al. Endophytic fungi: eco-friendly future resource for novel bioactive compounds. In: Endophytes: biology biotechnology. Cham: Springer; 2017. p. 303–331.
  • Sudheep N, Marwal A, Lakra N, et al. Fascinating fungal endophytes role and possible beneficial applications: an overview. In: Plant-microbe interactions in agro-ecological perspectives. Singapore: Springer; 2017. p. 255–273.
  • Tejesvi MV, Pirttilä AM. Endophytic fungi, occurrence, and metabolites. In: Physiology and genetics. Cham: Springer; 2018. p. 213–230.
  • Yan L, Zhao H, Zhao X, et al. Production of bioproducts by endophytic fungi: chemical ecology, biotechnological applications, bottlenecks, and solutions. Appl Microbiol Biotechnol.. 2018;102:6279–6298.
  • Bhagat J, Kaur A, Sharma M, et al. Molecular and functional characterization of endophytic fungi from traditional medicinal plants. World J Microbiol Biotechnol.. 2012;28:963–971.
  • Huang W-Y, Cai Y-Z, Xing J, et al. A potential antioxidant resource: endophytic fungi from medicinal plants. Econ Bot. 2007; 61:14–30
  • Kaul S, Gupta S, Sharma S, et al. The fungal endobiome of medicinal plants: a prospective source of bioactive metabolites. In: Medicinal plants and fungi: recent advances in research and development. Singapore: Springer; 2017. p. 167–228.
  • Rusanova M, Rusanov K, Momchilova S, et al. Assessment the fermentation of rose oil distillation wastewater (RODW) by Trichoderma asperellum SL-45 as additional step for fungal biomass production, to the RODW phenolics extraction. Sofia: Ann Sofia Univ. 2018; Book 4, (in press).
  • White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications. Academic Press Inc; 1990;18. p. 315–322.
  • Tamura K, Dudley J, Nei M, et al. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596–1599.
  • Singleton VL, RO, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol. 1999;299:152–178.
  • Miller G. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem; 1959;31:426–428.
  • Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 2015;43:W566–W570.
  • Aveskamp MM, de Gruyter J, Woudenberg JHC, et al. Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Stud Mycol. 2010;65:1–60.
  • Chen Q, Jiang J, Zhang G, et al. Resolving the Phoma enigma. Stud Mycol. 2015;82:137–217.
  • Eram D, Arthikala M-K, Melappa G, et al. Alternaria species: endophytic fungi as alternative sources of bioactive compounds. Ital J Mycol. 2018;47:40–54.
  • Guo L, Xu L, Zheng W-H, et al. Genetic variation of Alternaria alternata, an endophytic fungus isolated from Pinus tabulaeformis as determined by random amplified microsatelites (RAMS). Fungal Divers. 2004;16:53–65.
  • Lou J, Fu L, Peng Y, et al. Metabolites from Alternaria fungi and their bioactivities. Molecules. 2013;18:5891–5935.
  • Rusanov K, Kovacheva N, Vosman B, et al. Microsatellite analysis of Rosa damascena Mill. accessions reveals genetic similarity between genotypes used for rose oil production and old Damask rose varieties. Theor Appl Genet.. 2005;111:804–809.
  • Rusanov K, Kovacheva N, Rusanova M, et al. Low variability of flower volatiles of Rosa damascena Mill. plants from rose plantations along the Rose Valley, Bulgaria. Ind Crops Prod. 2012;37:6–10.
  • Rusanov K, Kovacheva N, Rusanova M, et al. Traditional Rosa damascena flower harvesting practices evaluated through GC/MS metabolite profiling of flower volatiles. Food Chem. 2011;129:1851–1859.