1,718
Views
15
CrossRef citations to date
0
Altmetric
Articles

Cancer cell growth inhibition by aroylhydrazone derivatives

, , , , , & show all
Pages 756-763 | Received 27 Nov 2018, Accepted 11 Apr 2019, Published online: 19 Jul 2019

References

  • Suvarapu LN, Seo YK, Baek SO, et al. Review on analytical and biological applications of hydrazones and their metal complexes. Eletron J Chem. 2012;9:1288–1304.
  • Verma G, Marella A, Shaquiquzzaman M, et al. A review exploring biological activities of hydrazones. J Pharm Bioall Sci. 2014;6:69–80.
  • Rollas S, Küçükgüzel ŞG. Biological activities of hydrazone derivatives. Molecules. 2007;12:1910–1939.
  • Stadler AM, Harrowfield J. Bis-acyl-/aroyl-hydrazones as multidentate ligands. Inorg Chim Acta. 2009;362:4298–4314.
  • Shakdofa MME, Shtaiwi MH, Morsy N, et al. Metal complexes of hydrazones and their biological, analytical and catalytic applications: a review. Main Group Chem. 2014;13:187–218.
  • Júnior WB, Alexandre-Moreira MS, Alves MA, et al. Analgesic and anti-inflammatory activities of salicylaldehyde 2-chlorobenzoyl hydrazone (H(2)LASSBio-466), salicylaldehyde 4-chlorobenzoyl hydrazone (H(2)LASSBio-1064) and their zinc(II) complexes. Molecules. 2011;16:6902–6915.
  • Hollo B, Magyari J, Radovanovic VZ, et al. Synthesis characterisation and antimicrobial activity of bis(phthalazine-1-hydrazone)-2,6-diacetylpyridine and its complexes with CoIII, NiII, CuII and ZnII. Polyhedron. 2014;80:142–150.
  • Aslan HG, Karacan N. Aromatic sulfonyl hydrazides and sulfonyl hydrazones: antimicrobial activity and physical properties. Med Chem Res. 2013; 22:1330–1338.
  • Ajani OO, Obafemi CA, Nwinyi OC, et al. Microwave assisted synthesis and antimicrobial activity of 2-quinoxalinone-3-hydrazone derivatives. Bioorg Med Chem. 2010;18:214–221.
  • Kumar P, Narasimhan B. Hydrazides/hydrazones as antimicrobial and anticancer agents in the new millennium. Mini-Rev Med Chem. 2013;13:971–987.
  • Parrilha GL, Vieira RP, Rebolledo AP, et al. Binuclear zinc(II) complexes with the anti-inflammatory compounds salicylaldehyde semicarbazone and salicylaldehyde-4-chlorobenzoyl hydrazone H2LASSBio-1064. Polyhedron. 2011;30:1891–1898.
  • Nfor EN, Husian A, Majoumo-Mbe F, et al. Synthesis, crystal structure and antifungal activity of a Ni(II) complex of a new hydrazone derived from antihypertensive drug hydralazine hydrochloride. Polyhedron. 2013;63:207–213.
  • Sinha R, Sara U, Khosa R, et al. Nicotinic acid hydrazones: a novel anticonvulsant pharmacophore. Med Chem Res. 2011;20:1499–1504.
  • Dandawate P, Vemuri K, Khan EM, et al. Synthesis, characterization and anti-tubercular activity of ferrocenyl hydrazones and their β-cyclodextrin conjugates. Carbohydr Polym. 2014;108:135–144.
  • Pinheiro AC, Kaiser CR, Nogueira TCM, et al. Synthesis and antitubercular activity of new L-serinyl hydrazone derivatives. Med Chem. 2011;7:611–623.
  • Chaston TB, Watts RN, Yuan J, et al. Potent antitumor activity of novel iron chelators derived from di-2-pyridylketone isonicotinoyl hydrazone involves fenton-derived free radical generation. Clin Cancer Res. 2004;10:7365–7374.
  • Congiu C, Onnis V. Synthesis and biological evaluation of novel acylhydrazone derivatives as potential antitumor agents. Bioorg Med Chem. 2013;21:6592–6599.
  • Alagesan M, Bhuvanesh NSP, Dharmaraj N. Potentially cytotoxic new copper(II) hydrazone complexes: synthesis, crystal structure and biological properties. Dalton Trans. 2013;42:7210–7223.
  • Becker EM, Lovejoy DB, Greer JM, et al. Identification of the di-pyridyl ketone isonicotinoyl hydrazone (PKIH) analogues as potent iron chelators and anti-tumour agents. Br J Pharmacol. 2003;138:819–830.
  • Savini L, Chiasserini L, Travagli V, et al. New α-(N)-heterocyclichydrazones: evaluation of anticancer, anti-IV and antimicrobial activity. Eur J Med Chem. 2004;39:113–122.
  • Richardson DR. Iron chelators as therapeutic agents for the treatment of cancer. Crit Rev Oncol Hematol. 2002;42:267–281.
  • Singh RK, Singh AK, Siddiqui S, et al. Synthesis, molecular structure, spectral analysis and cytotoxic activity of two new aroylhydrazones. J Mol Struct. 2017;1135:82–97.
  • Lovejoy DB, Richardson DR. Novel “hybrid” iron chelators derived from aroylhydrazones and thiosemicarbazones demonstrate selective antiproliferative activity against tumor cells. Blood. 2002;100:666–676.
  • Richardson DR, Kalinowski DS, Lau S, et al. Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents. Biochim Biophys Acta. 2009;1790:702–717.
  • Johnson DK, Murphy TB, Rose NJ, et al. Cytotoxic chelators and chelates 1. Inhibition of DNA synthesis in cultured rodent and human cells by aroylhydrazones and by a copper(II) complex of salicylaldehyde benzoyl hydrazone. Inorg Chim Acta. 1982;67:159–165.
  • Nair RS, Kuriakose M, Somasundaram V, et al. The molecular response of vanadium complexes of nicotinoyl hydrazone in cervical cancers - A possible interference with HPV oncogenic markers. Life Sci. 2014;116:90–97.
  • Baker E, Richardson DR, Gross S, et al. Evaluation of the iron chelation potential of hydrazones of pyridoxal, salicylaldehyde and 2-hydroxy-1-naphthylaldehyde using the hepatocyte in culture. Hepatology. 1992;15:492–501.
  • Richardson DR, Milnes K. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents II: the mechanism of action of ligands derived from salicylaldehyde benzoyl hydrazone and 2-hydroxy-1-naphthylaldehyde benzoyl hydrazone. Blood. 1997;89:3025–3038.
  • Macková E, Hrušková K, Bendová P, et al. Methyl and ethyl ketone analogs of salicylaldehyde isonicotinoyl hydrazone: novel iron chelators with selective antiproliferative action. Chem Biol Interact. 2012;197:69–79.
  • Nikolova-Mladenova B, Momekov G, Ivanova D, et al. Design and drug-like properties of new 5-methoxysalicylaldehyde based hydrazones with anti-breast cancer activity. J Appl Biomed. 2017;15:233–240.
  • Nikolova-Mladenova B, Halachev N, Iankova R, et al. Synthesis, characterization and cytotoxic activity of new salicylaldehyde benzoylhydrazone derivatives as potential anti-proliferative agents. Arzneimittelforschung 2012;61:714–718.
  • Hristova-Avakumova N, Yoncheva K, Nikolova-Mladenova B, et al. 3-Methoxy aroylhydrazones – free radicals scavenging, anticancer and cytoprotective potency. Redox Report. 2017;22:408–417.
  • Nikolova-Mladenova B, Momekov G, Ivanov D. Synthesis and physicochemical characterization of new salicylaldehyde benzoyl hydrazone derivative with high cytotoxic activity. Pharmacia. 2011; LVIII:4–44.
  • Galić N, Perić B, Kojić-Prodić B, et al. Structural and spectroscopic characteristics of aroylhydrazones derived from nicotinic acid hydrazide. J Mol Struct. 2001;559:187–194.
  • Galić N, Rubčić M, Magdić K, et al. Solution and solid-state studies of complexation of transition-metal cations and Al(III) by aroylhydrazones derived from nicotinic acid hydrazide. Inorg Chim Acta. 2011;366:98–104.
  • Galić N, Dijanošić A, Kontrec D, et al. Structural investigation of aroylhydrazones in dimethylsuplhoxide/water mixtures. Spectrochim Acta Part A. 2012;95:347–753.
  • Budimir A, Benković T, Tomišić V, et al. Hydrolysis and extraction properties of aroylhydrazones derived from nicotinic acid hydrazide. J Solution Chem. 2013;42:1935–1948.
  • Stražić D, Benković T, Gembarovski D, et al. Comprehensive ESI-MS and MS/MS analysis of aromatic hydrazones derived from nicotinic acid hydrazide. Int J Mass Spectrom. 2014;371:54–64.
  • Galić N, Brođanac I, Kontrec D, et al. Structural investigations of aroylhydrazones derived from nicotinic acid hydrazide in solid state and in solution. Spectrochim Acta A. 2013;107:263–270.
  • Benković T, Kenđel A, Parlov-Vuković J, et al. Aromatic hydrazones derived from nicotinic acid hydrazide as fluorimetric pH sensing molecules: structural analysis by computational and spectroscopic methods in solid phase and in solution. Spectrochim Acta A. 2018;190:259–267.
  • Benković T, Kenđel A, Parlov-Vuković J, et al. Multiple dynamics of aroylhydrazone induced by mutual effect of solvent and light - spectroscopic and computational study. J Mol Liq. 2018;255:18–25.
  • Benković T, Kontrec D, Tomišić V, et al. Acid–base properties and kinetics of hydrolysis of aroylhydrazones derived from nicotinic acid hydrazide. J Solution Chem. 2016;45:1227–1245.
  • Ding S, Li W. Dioxomolybdenum(VI) complexes of hydrazones of two substituted salicylaldehydes: synthesis, structures, and catalytic properties. J Coord Chem. 2013;66:2023–2031.
  • Borhade S. Synthesis, characterisation and spectrophotometric determination of Fe(II) complex of 2,4-dihydroxybenzaldehyde isonicotinoyl hydrazone{(E)-N’-(2,4-dihydroxy benzylidene)isonicotinohydrazide, it’s application & biological activity. Der Chemica Sinica. 2011;2:64–71.
  • Xu J, Shu Y, Hu P. Crystal structure of N'-(3,5-dichloro-2-hydroxybenzylidene)-isonicotinohydrazide, C13H9Cl2N3O2. Z Kristallogr NCS. 2011;226:63–64.
  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;16:55–63.
  • Alcindor T, Beauger N. Oxaliplatin: a review in the era of molecularly targeted therapy. Curr Oncol. 2011;18:18–25.
  • Göschl S, Schreiber-Brynzak E, Pichler V, et al. Comparative studies of oxaliplatin-based platinum(iv) complexes in different in vitro and in vivo tumor models. Metallomics. 2017;9:309–322.
  • Badisa RB, Lambert AT, Ikediobi CO, et al. Selective anticancer activity of pure licamichauxiioic-B acid in culture cell lines. Pharmaceut Biol. 2006;44:14–145.
  • Koch A, Tamez P, Pezzuto J, et al. Evaluation of plants used for antimalarial treatment by the Maasai of Kenya. J Ethnopharmacol. 2005;101:95–99.