3,013
Views
27
CrossRef citations to date
0
Altmetric
Articles

Novel composite biosorbent from Bacillus cereus for heavy metals removal from aqueous solutions

, , , , &
Pages 730-738 | Received 15 Feb 2019, Accepted 16 Apr 2019, Published online: 16 May 2019

References

  • Ajmal M, Khan A, Nomani AA, et al. Heavy metals: leaching from glazed surfaces of tea mugs. Sci Total Environ. 1997;207:49–54.
  • González-Muñoz MJ, Rodríguez MA, Luque S, et al. Recovery of heavy metals from metal industry waste waters by chemical precipitation and nanofiltration. Desalination. 2006;200:742–744.
  • Macchi G, Marani D, Pagano M, et al. A bench study on lead removal from battery manufacturing wastewaters by carbonate precipitation. Water Res. 1996;30:3032–3036.
  • Hunsom M, Pruksathorn K, Damronglerd S, et al. Electrochemical treatment of heavy metals (Cu2+, Cr6+, Ni2+) from industrial effluent and modeling of copper reduction. Water Res. 2005;39:610–616.
  • Atkinson S. World’s largest desalination plant begins operating in Israel. Membr Technol. 2005;2005:9–10.
  • Gholani MM, Mokhtari MA, Aameri A, et al. Application of reverse osmosis technology for arsenic removal from drinking water. Desalination. 2006;200:725–727.
  • Ćurković L, Cerjan-Stefanović Š, Filipan T. Metal ion exchange by natural and modified zeolites. Water Res. 1997;31:1379–1382.
  • Eom TH, Lee CH, Kim JH, et al. Development of an ion exchange system for plating wastewater treatment. Desalination. 2005;180:163–172.
  • Djukić A, Jovanović U, Tuvić T, et al. The potential of ball-milled Serbian natural clay for removal of heavy metal contaminants from wastewaters: simultaneous sorption of Ni, Cr, Cd and Pb ions. Ceram Int. 2013;39:7173–7178.
  • Shavandi MA, Haddadian Z, Ismail MHS, et al. Removal of Fe(III), Mn(II) and Zn(II) from palm oil mill effluent (POME) by natural zeolite. J Taiwan Inst Chem Eng. 2012;43:750–759.
  • Vijayaraghavan K, Yun YS. Bacterial biosorbents and biosorption. Biotechnol Adv. 2008;26:266–291.
  • Gadd GM. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol. 2009;84:13–28.
  • Hansda A, Kumar V. Anshumali A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World J Microbiol Biotechnol. 2016;32:170.
  • Volesky B. Sorption and biosorption. Montreal (QC): BV-Sorbex Inc.; 2003. p. 97–100.
  • Fomina M, Gadd GM. Biosorption: current perspectives on concept, definition and application. Bioresour Technol. 2014;160:3–14.
  • Modak JM, Natarajan KA. Biosorption of metals using nonliving biomass – a review. Miner Metall Proc. 1995;12:189–196.
  • Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnol Adv. 2009;27:195–226.
  • Park D, Yun AS, Park JM. The past, present, and future trends in biosorption. Biotechnol Bioproc Eng. 2010;15:86–102.
  • Ramrakhiani L, Ghosh S, Majumdar S. Surface modification of naturally available biomass for enhancement of heavy metal removal efficiency, upscaling prospects, and management aspects of spent biosorbents: a review. Appl Biochem Biotechnol. 2016;180:41–78.
  • Veglio F, Beolchini F. Removal of metals by biosorption: a review. Hydrometallurgy. 1997;44:301–316.
  • Andrès Y, Texier AC, Le Cloirec P. Rare earth elements removal by microbial biosorption: a review. Environ Technol. 2003;24:1367–1375.
  • Li X, Wang Y, Li Y, et al. Biosorption behaviors of biosorbents based on microorganisms immobilized by Ca-alginate for removing lead(II) from aqueous solution. Biotechnol Bioproc Eng. 2011;16:808.
  • Çabuk A, Akar T, Tunali S, et al. Biosorption characteristics of Bacillus sp. ATS-2 immobilized in silica gel for removal of Pb(II). J Hazard Mater. 2006;163:317–323.
  • Wen X, Du C, Zeng G, et al. A novel biosorbent prepared by immobilized Bacillus lichemiformis for lead removal from wastewaters. Chemosphere. 2018;200:173–179.
  • Xiangling P, Jianlong W, Daoyong Z. Biosorption of Pb(II) by Pleurotus ostreatus immobilized in calcium alginate gel. Process Biochem. 2005;40:2799–2803.
  • Lin C, Lai Y-T. Adsorption and recovery of lead(II) from aqueous solutions by immobilized Pseudomonas aeruginosa PU21 beads. J Hazard Mater. 2006;137:99–105.
  • Mata YN, Blazquez ML, Ballester A, et al. Biosorption of cadmium, lead and copper with calcium alginate xerogels and immobilized Fucus vesiculosus. J Hazard Mater. 2009;163:555–562.
  • Tsekova K, Todorova D, Dencheva V, et al. Biosorption of copper(II) and cadmium(II) from aqueous solutions by free and immobilized biomass of Aspergillus niger. Bioresour Technol. 2010;101:1727–1731.
  • Yan G, Viraraghavan T. Heavy metal removal in a biosorpetion column by immobilized Mucor rouxii biomass. Bioresour Technol. 2001;78:243–249.
  • Arica YM, Bayramoglu G, Yilmaz M, et al. Biosorption of Hg2+, Cd2+ and Zn2+ by calcium alginate and immobilized wood-rotting fungus Funalia trogii. J Hazard Mater. 2004;109:191–199.
  • Loukidou M, Zouboilis A, Karapantsios T, et al. Equilibrium and kinetic modeling of Cr(VI) biosorption by Aeromonas caviae. Colloids Surf A: Physicochem Eng Aspects. 2004;242:90–104.
  • Bishnoi NR, Kumar R, Bishnoi K. Biosorption of Cr (VI) with Trichoderma viride immobilized fungal biomass and cell free Ca-alginate beads. Indian J Exp Biol. 2007;45:657–664.
  • Tan WS, Ting A. Efficacy and reusability of alginate-immobilized live and heat-inactivated Trichoderma asperellum cells for Cu(II) removal from aqueous solution. Bioresour Technol. 2012;123:290–295.
  • Ivánová D, Horváthová H, Kaduková J, et al. Stability of immobilized biosorbents and its influence on biosorption of copper. Nova Biotechnol. 2010;10:45–51.
  • Es I, Vieira J, Amaral AC. Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol. 2015;99:2065–2082.
  • Górecka E, Jastrzębska M. Immobilization techniques and biopolymer carriers. Biotechnol Food Sci. 2011;75:65–86.
  • Chatterjee A, Ray L. Biosorption of Cu(II) by immobilized biomass of Bacillus cereus M116 from aqueous solution. J Sci Ind Res. 2008;67:629–634.
  • Paul S, Bera D, Chattopadhyay P, et al. Biosorption of Pb(II) by Bacillus cereus M116 Immobilized in Calcium Alginate Gel. J Hazard Subst Res. 2006;5:2.
  • Esposito A, Pagnanelli F, Lodi A, et al. Biosorption of heavy metals by Sphaerotilus natans: an equilibrium study at different pH and biomass concentrations. Hydrometallurgy. 2001;60:129–141.
  • Alkan H, Gul-Guven R, Guven K, et al. Biosorption of Cd2+, Cu2+, and Ni2+ ions by a thermophilic haloalkalitolerant bacterial strain (KG9) immobilized on amberlite XAD-4. Pol J Environ Stud. 2015;24:1903–1910.
  • Alavi SA, Zilouei H, Asadinezhad A. Otostegia persica biomass as a new biosorbent for the removal of lead from aqueous solutions. Int J Environ Sci Technol. 2015;12:489–498.
  • Ozdes D, Gundogdu A, Kemer B, et al. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study. J Hazard Mater. 2009;166:1480–1487.
  • Boschi C, Maldonado H, Ly M, et al. Cd(II) biosorption using Lessonia kelps. J Colloid Interface Sci. 2011;357:487–496.
  • O’Connell DW, Birkinshaw C, O’Dwyer TF. Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol. 2008;99:6709–6724.
  • Pan J, Liu R, Tang H. Surface reaction of Bacillus cereus biomass and its biosorption for lead and copper ions. J Environ Sci. 2007;19:403–408.
  • Seo H, Lee M, Wang S. Equilibrium and kinetic studies of the biosorption of dissolved metals on Bacillus drentensis immobilized in biocarrier beads. Environ Eng Res. 2013;18:45–53.
  • Oves M, Khan MS, Zaidi A. Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J Biol Sci. 2013;20:121–129.