12,432
Views
48
CrossRef citations to date
0
Altmetric
Reviews

Antimicrobial activity, mechanism of action, and methods for stabilisation of defensins as new therapeutic agents

, , , &
Pages 671-682 | Received 27 Nov 2018, Accepted 19 Apr 2019, Published online: 11 May 2019

References

  • Giuliani A, Pirri G, Nicoletto SF. Antimicrobial peptides: an overview of a promising class of therapeutics. Central Eur J Biol. 2007;2:1–33.
  • Martin E, Ganz T, Lehrer RI. Defensins and other endogenous peptide antibiotics of vertebrates. J Leukoc Biol. 1995;58:128–136.
  • Huang Y, Huang J, Chen Y. Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein Cell. 2010;1:143–152.
  • Dorica-Mirela S, Ionel J. Biologically active natural peptides. J Agroaliment Processes Technol. 2009;15:484–499.
  • Zhang LJ, Gallo RL. Antimicrobial peptides. Curr Biol. 2016;26:14–19.
  • Ganz T. The role of antimicrobial peptides in innate immunity. Integr Comp Biol. 2003;43:300–304.
  • Bals R. Epithelial antimicrobial peptides in host defense against infection. Respir Res. 2000;1:141–150.
  • Ganz T. Defensins and host defense. Science. 1999;286:420–421.
  • Oppenheim JJ, Biragyn A, Kwak LW, et al. Roles of antimicrobial peptides such as defensins in innate and adaptive immunity. Ann Rheum Dis. 2003;62:17–21.
  • Gordon YJ, Romanowski ER, McDermott AM. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res. 2005;30:505–515.
  • Raj PA, Dentino AR. Current status of defensins and their role in innate and adaptive immunity. FEMS Microbiol Lett. 2002;206:9–18.
  • Nikitina IG, Bukurova YA, Krasnov GS, et al. Structure and function of enteric α-defensins in norm and pathology. Mol Biol. 2012;46:27–33.
  • Ganz T, Lehrer RI. Antimicrobial peptides of vertebrates. Curr Opin Immunol. 1998;10:41–44.
  • Schneider JJ, Unholzer A, Schaller M, et al. Human defensins. J Mol Med. 2005;83:587–595.
  • Wiesner J, Vilcinskas A. Antimicrobial peptides: the ancient arm of the human immune system. Virulence. 2010;1:440–464.
  • Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals (Basel). 2014;7:545–594.
  • Khusro A, Aarti C, Agastian P. Anti-tubercular peptides. A quest of future therapeutic weapon to combat tuberculosis. Asian Pac J Trop Med. 2016;9:1023–1034.
  • Priyadharshini VS, Ramґırez-Jimґenez F, Molina-Macip M, et al. Human neutrophil defensin-1, -3, and -4 are elevated in nasal aspirates from children with naturally occurring adenovirus infection. Canad Respir J. 2018;2018:1–6.
  • Zasloff M. Antimicrobial peptides, innate immunity, and the normally sterile urinary tract. JASN. 2007;18:2810–2816.
  • Fernandes G. Anti-microbial peptides and their speculative role in periodontitis. Biomed J Sci Tech Res. 2017;1:000554.
  • Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3:710–720.
  • Rapista A, Ding J, Benito B, et al. Human defensins 5 and 6 enhance HIV-1 infectivity through promoting HIV attachment. Retrovirology. 2011;8:1–45.
  • Fruitwal S, El-Naccache DW, Chang TE. Multifaceted immune functions of human defensins and underlying mechanisms. Semin Cell Dev Biol. 2019;88:163–172. 30415-30419.
  • Wang C, Zhao G, Wang S, et al. A simplified derivative of human defensin 5 with potent and efficient activity against multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2018;62:e01504–17.
  • Cole AM, Ganz T. Human antimicrobial peptides:analysis and application. BioTechniques. 2000;29:822–831.
  • Selsted ME, Ouellette AJ. Mammalian defensins in the antimicrobial response. Nat Immunol. 2005;6:551–557.
  • Ghosh SK, Gerken TA, Schneider KM, et al. Quantification of human β-defensin-2 and β-3 in body fluids: application for studies of innate immunity. Clin Chem. 2007;53:757–765.
  • Tecle T, Tripathi S, Hartshorn KL. Review: defensins and cathelicidins in lung immunity. Innate Immun. 2010;16:151–159.
  • James CP, Bajaj-Elliott M, Abujaber R, et al. Human beta defensin (HBD) gene copy number affects HBD2 protein levels: impact on cervical bactericidal immunity in pregnancy. Eur J Hum Genet. 2018;26:434–439.
  • Baricelli J, Rocafull MA, Vázquez D, et al. β-defensin-2 in breast milk displays a broad antimicrobial activity against pathogenic bacteria. J Pediatr. 2015;91:36–43.
  • Hamanaka Y, Nakashima M, Wada A, et al. Expression of human β-defensin 2 (hBD-2) in Helicobacter pylori induced gastritis: antibacterial eVect of hBD-2 against Helicobacter pylori. Gut. 2001;49:481–487.
  • Cobo ER, Chadee K. Antimicrobial human β-defensins in the colon and their role in infectious and non-infectious diseases. Pathogens. 2013;2:177–192.
  • Järvå M, Phan TK, Lay FT, et al. Human β‐defensin 2 kills Candida albicans through phosphatidylinositol 4,5-bisphosphate-mediated membrane permeabilization. Sci Adv. 2018;4:eaat0979.
  • Dhople V, Krukemeyer A, Ramamoorthy A. The human beta-defensin-3, an antibacterial peptide with multiple biological functions. Biochim Biophys Acta. 2006;1758:1499–1512.
  • Pace BT, Lackner AA, Porter E, et al. The role of defensins in HIV pathogenesis. Mediators Inflamm. 2019;2017: 1–12.
  • Park MS, Kim JI, Ilseob Lee I, et al. Towards the application of human defensins as antivirals. Biomol Ther (Seoul). 2018;26:242–225.
  • Prahl A, Pazgier M, Alexandratos J, et al. Human β-defensin 4 - defensin without the “twist”. Postepy Biochem. 2016;62:349–361.
  • Jarczak J, Kościuczuk EM, Lisowski P, et al. Defensins: natural component of human innate immunity. Hum Immunol. 2013;74:1069–1079.
  • Chow BT, Soto M, Lo BL, et al. Antibacterial activity of four human beta-defensins: HBD-19, HBD-23, HBD-27, and HBD-29. Polymers. 2012;4:747–758.
  • Conibear AC, Wang CK, Bi T, et al. Insights into the molecular flexibility of θ-defensins by NMR relaxation analysis. J Phys Chem B. 2014;118:14257–14266.
  • Conibear AC, Craik DJ. The chemistry and biology of theta defensins. Angew Chem Int Ed Engl. 2014;53:10612–10623.
  • Tai KP, Kamdar K, Yamaki J, et al. Microbicidal effects of α- and θ-defensins against antibiotic-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Innate Immun. 2015;21:17–29.
  • Albrethsen J, Bogebo R, Gammeltoft S, et al. Upregulated expression of human neutrophil peptides 1, 2 and 3 (HNP 1-3) in colon cancer serum and tumours: a biomarker study. BMC Cancer. 2005;5:8.
  • Al-Rayahi IAM, Sanyi RHH. The overlapping roles of antimicrobial peptides and complement in recruitment and activation of tumor-associated inflammatory. Cells Front Immunol. 2015;6:2.
  • Howell K, Leeuw ED. Cell adhesion properties of human defensins. Biochem Biophys Res Commun. 2018;502:238–242.
  • Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta. 2008;1778:357–375.
  • Xu N, Wang YS, Pan WB, et al. Human alpha-defensin-1 inhibits growth of human lung adenocarcinoma xenograft in nude mice. Mol Cancer Ther. 2008;7:1588–1597.
  • Boohaker RJ, Lee MW, Vishnubhotla P, et al. The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem. 2012;19:3794–3804.
  • Jin G, Weinberg A. Human antimicrobial peptides and cancer. Semin Cell Dev Biol. 2019;88:156–162.
  • Andersson DI, Hughes D, Kubicek-Sutherland JZ. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat. 2016;26:43–57.
  • Pushpanathan M, Gunasekaran P, Rajendhran J. Antimicrobial peptides: versatile biological properties. Int J Peptide. 2019;2013:1–15.
  • Nasri H, Shahreza FD. Defensins usage as novel therapeutic and diagnostic approach. Immunopathol Persa. 2015;1:e05.
  • Lu W, Leeuw E. Pro-inflammatory and pro-apoptotic properties of human defensin 5. Biochem Biophys Res Commun. 2013;436:557–562.
  • Bayer A, Lammel J, Tohidnezhad M, et al. The antimicrobial peptide human beta-defensin-3 is induced byplatelet-released growth factors in primary keratinocytes. Mediators Inflamm. 2017;2017:6157491.
  • Lo ´Pez-Bermejo A, Chico-Julia B, et al. Alpha defensins 1, 2, and 3 potential roles in dyslipidemia and vascular dysfunction in humans. Arterioscler Thromb Vasc Biol. 2007;27:1166–1171.
  • Guilhelmelli F, Vilela N, Albuquerque P, et al. Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Front Microbiol. 2013;4:353.
  • Midura-Nowaczek K, Markowska A. Antimicrobial peptides and their analogs: searching for new potential therapeutics. Perspect Med Chem. 2014;6:73–80.
  • Pachón-Ibáñez ME, Smani Y, Pachón J, et al. Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiol Rev. 2017;41:323–342.
  • Peters BM, Shirtliff ME, Jabra-Rizk MA. Antimicrobial peptides: primeval molecules or future drugs? PLoS Pathog. 2010;6:e1001067.
  • Aoki W, Ueda M. Characterization of antimicrobial peptides toward the development of novel antibiotics. Pharmaceuticals. 2013;6:1055–1081.
  • Goodwin D, Simerska P, Toth I. Peptides as therapeutics with enhanced bioactivity. Curr Med Chem. 2012;19:4451–4461.
  • Matsuzaki K. Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta. 2009;1788:1687–1692.
  • Mojsoska B, Jenssen H. Peptides and peptidomimetics for antimicrobial drug design. Pharmaceuticals (Basel). 2015;8:366–415.
  • Brogdena NK, Brogdenb KA. Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int J Antimicrob Agent. 2011;38:217–225.
  • Huerta-Cantillo J, Navarro-García F. Properties and design of antimicrobial peptides as potential tools against pathogens and malignant cells. Investigación en Discapacidad. 2016;5:96–115.
  • Patch JA, Barron AE. Helical peptoid mimics of magainin-2 amide. J Am Chem Soc. 2003;125:12092–12093.
  • Reinhardt A, Neundorf I. Design and application of antimicrobial peptide conjugates. Int J Mol Sci. 2016;17:701.
  • Li X, Robinson SM, Gupta A, et al. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano. 2014;8:10682–10686.
  • Peng LH, Huang YF, Zhang CZ, et al. Integration of antimicrobial peptides with gold nanoparticles as unique non-viral vectors for gene delivery to mesenchymal stem cells with antibacterial activity. Biomaterials. 2016;103:137–149.
  • Zhou J, Zhang Y, Li L, et al. Human β-defensin 3-combined gold nanoparticles for enhancement of osteogenic differentiation of human periodontal ligament cells in inflammatory microenvironments. Int J Nanomed. 2018;13:555–567.
  • Salouti M, Mirzaei F, Shapouri R, et al. Synergistic antibacterial activity of plant peptide MBP-1 and silver nanoparticles combination on healing of infected wound due to Staphylococcus aureus. Jundishapur J Microbiol. 2016;9:27997.
  • Elgorban AM, El-Samawaty A, Yassin MA, et al. Antifungal silver nanoparticles: synthesis, characterization and biological evaluation. Biotechnol Biotechnol Equip. 2016;30:56–62.
  • Abalkhil TA, Alharbi SA, Salmen SH, et al. Bactericidal activity of biosynthesized silver nanoparticles against human pathogenic bacteria. Biotechnol Biotechnol Equip. 2017;31:411–417.
  • Vignoni M, Weerasekera HA, Simpson MJ, et al. LL37 peptide@silver nanoparticles: combining the best of the two worlds for skin infection control. Nanoscale. 2014;6:5725–5728.
  • Zhang XL, Jiang AM, Ma ZY, et al. The synthetic antimicrobial peptide pexiganan and its nanoparticles (PNPs) exhibit the anti-Helicobacter pylori activity in vitro and in vivo. Molecules. 2015;20:3972–3985.
  • Wang G, Mishra B, Lau K, et al. Antimicrobial peptides in 2014. Pharmaceuticals (Basel). 2015;8:123–150.
  • Carmona-Ribeiro AM, Carrasco L. Novel formulations for antimicrobial peptides. Int J Mol Sci. 2014;15:18040–18083.
  • Neundorf I. Metal complex-peptide conjugates. How to modulate bioactivity of metal-containing compounds by the attachment to peptides. Curr Med Chem. 2017;24:1–9.
  • Cooper GM, Hausman RE. The cell: a molecular approach. 3rd ed. Washington: Sinauer Associates; 2004