1,887
Views
1
CrossRef citations to date
0
Altmetric
Articles

Genetic dissection of two fibre yield-related stem traits in ramie (Boehmeria nivea L. Gaud)

, , , &
Pages 664-670 | Received 26 Dec 2018, Accepted 23 Apr 2019, Published online: 15 May 2019

References

  • Xiong H. Bast-fiber crops breeding. Beijing (China): China Agricultural Science and Technology Press; 2008.
  • Aldaba VC. The structure and development of the cell wall in plants I. bast fibers of Boehmeria and Linum. Am J Bot. 1927;14:16–24.
  • Liu LJ, Chen HQ, Dai X, et al. Effect of planting density and fertilizer application on fiber yield of ramie (Boehmeria nivea). J Integr Agric. 2012;11:1199–1206.
  • Xiong H, Jiang J, Yu C, et al. Relations between yield-related traits and yield in ramie. Acta Agronomica Sinica. 1998;24:155–160.
  • Liu T, Zhu S, Fu L, et al. Development and characterization of 1,827 expressed sequence tag-derived simple sequence repeat markers for ramie (Boehmeria nivea L. Gaud). PLoS One. 2013;8:e60346. [cited 2019 Apr 13]
  • Liu T, Zhu S, Tang Q, et al. QTL mapping for fiber yield-related traits by constructing the first genetic linkage map in ramie (Boehmeria nivea L. Gaud). Mol Breeding. 2014;34:883–892.
  • Luan MB, Liu CC, Wang XF, et al. SSR markers associated with fiber yield traits in ramie (Boehmeria nivea L. Gaudich). Ind Crops Prod. 2017;107:439–445.
  • Verma S, Gupta S, Bandhiwal N, et al. High-density linkage map construction and mapping of seed trait QTLs in chickpea (Cicer arietinum L.) using genotyping-by-sequencing (GBS). Sci Rep. 2015;5:17512.
  • Branham S, Levi A, Farnham M, et al. A GBS-SNP-based linkage map and quantitative trait loci (QTL) associated with resistance to Fusarium oxysporumf. sp. Niveum race 2 identified in Citrullus lanatusvar. citroides. Theor Appl Genet. 2017;130:319–330.
  • Liu C, Zhu S, Tang S, et al. QTL analysis of four main stem bark traits using a GBS-SNP-based high-density genetic map in ramie. Sci Rep. 2017;7:13458.
  • Zhong R, Ye Z. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation. Plant Cell Physiol. 2015;56:195–214.
  • Van OJ, Boer M, Jansen R, et al. MapQTL 4.0: software for the calculation of QTL positions on genetic maps [User manual]. Wageningen (Netherlands): Plant Research International; 2000.
  • Wang D, Zhu J, Li Z, et al. Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet. 1999;99:1255–1264.
  • Li W, Cowley A, Uludag M, et al. The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 2015;43:580–584.
  • Marchler BA, Lu S, Anderson JB, et al. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 2011;39:D225–D229.
  • Liu T, Zhu S, Tang Q, et al. Identification of drought stress-responsive transcription factor in ramie (Boehmeria nivea L. Gaud). BMC Plant Biol. 2013;13:130. 10.1186/1471-2229-13-130
  • Thompson JD, Gibson TJ, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:4876–4882.
  • Tamura K, Dudley J, Nei M, et al. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596–1599.
  • Liu T, Zhang Y, Xue W, et al. Comparison of quantitative trait loci for 1,000-grain weight and spikelets per panicle across three connected rice populations. Euphytica. 2010;175:383–394.
  • Liu T, Li L, Zhang Y, et al. Comparison of quantitative trait loci for rice yield, panicle length and spikelet density across three connected populations. J Genet. 2011;90:377–382.
  • Mao D, Liu T, Xu C, et al. Epistasis and complementary gene action adequately account for the genetic bases of transgressive segregation of kilo-grain weight in rice. Euphytica. 2011;180:261–271.
  • Zhu S, Zheng X, Dai Q, et al. Identification of quantitative trait loci for flowering time traits in ramie (Boehmeria nivea L. Gaud). Euphytica. 2016;210:367–374.
  • Liu T, Tang Q, Zhu S, et al. Analysis of climatic factors causing yield difference in ramie among different eco-regions of Yalley valley. Agri Sci Technol. 2011;12:745–750.
  • Liu T, Zhu S, Tang Q, et al. Genome-wide transcriptomic profiling of ramie (Boehmeria nivea L. Gaud) in response to cadmium stress. Gene. 2015;558:131–137.
  • Liu C, Zeng L, Zhu S, et al. Draft genome analysis provides insights into the fiber yield, crude protein biosynthesis, and vegetative growth of domesticated ramie (Boehmerianivea L. Gaud). DNA Res. 2018;25:173–181.
  • Luan M, Jian J, Chen P, et al. Draft genome sequence of ramie, Boehmeria nivea (L.) Gaudich. Mol Ecol Resour. 2018;18:639–645.
  • Lange MP, Lange T. Gibberellin biosynthesis and the regulation of plant development. Plant Biol. 2006;8:281–290.
  • Fleet CM, Sun TP. A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol. 2005;8:77–85.
  • Sun TP. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr Biol. 2011;21:R338–345.
  • Hauvermale A, Ariizumi T, Steber C. Gibberellin signaling: a theme and variations on DELLA repression. Plant Physiol. 2012;160:83–92.
  • Thomas S, Sun T. Update on gibberellin signaling. A tale of the tall and the short. Plant Physiol. 2004;135:668–676.
  • Peng J, Richards DE, Hartley NM, et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature. 1999;400:256–261.
  • Ikeda A, Ueguchi TM, Sonoda Y, et al. Slender rice, a constitutive gibberellins response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell. 2001;13:999–1010.
  • Boss PK, Thomas MR. Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature. 2002;416:847–850.
  • Chandler PM, Marion PA, Ellis M, et al. Mutants at the slender1 locus of barley cv Himalaya: molecular and physiological characterization. Plant Physiol. 2002;129:181–190.
  • Muangprom A, Osborn TC. Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene. Theor Appl Genet. 2004;108:1378–1384.
  • Liu T, Zhu S, Fu L, et al. Morphological and physiological changes of ramie (Boehmeria nivea L. Gaud) in response to drought stress and GA3 treatment. Russ J Plant Physiol. 2013;60:749–755.
  • Liu T, Tang S, Zhu S, et al. Transcriptome comparison reveals the patterns of selection in domesticated and wild ramie (Boehmeria nivea L. Gaud)). Plant Mol Biol. 2014;86:85–92.