1,332
Views
4
CrossRef citations to date
0
Altmetric
Articles

Enzymatic identification and functional sites study of a novel cold-active cellulase (MkCel5) from Microbacterium kitamiensea

, , , &
Pages 739-747 | Received 23 Jan 2019, Accepted 24 Apr 2019, Published online: 27 May 2019

References

  • Zihare L, Blumberga D. Market opportunities for cellulose products from combined renewable resources. Environ Clim Technol. 2017;19:33–38.
  • Siqueira F, Filho EXF. Plant cell wall as a substrate for the production of enzymes with Industrial applications. Mini-Rev Org Chem. 2010;7:54–60.
  • Klemm D, Heublein B, Fink HP, et al. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl. 2005;44:3358–3393.
  • Lin L, Liu X, Zhou Y, et al. A novel pH-stable, endoglucanase (JqCel5A) isolated from a salt-lake microorganism, Jonesia quinghaiensis. Electron J Biotechnol. 2016;24:56–62.
  • Ueda M, Maruyama T, Kawasaki K, et al. Purification, characterization, and gene cloning of a cold-adapted endo-1,4-β-glucanase from Bellamya chinensis laeta. Mol Biotechnol. 2016;58:241–250.
  • Irfan M, Guler HI, Belduz AO, et al. Cloning, purification and characterization of a cellulase-free xylanase from Geobacillus thermodenitrificans AK53. Appl Biochem Microbiol. 2016;52:277–286.
  • Shinoda S, Kanamasa S, Arai M. Cloning of an endoglycanase gene from Paenibacillus cookii and characterization of the recombinant enzyme. Biotechnol Lett. 2012;34:281–286.
  • Rubini MR, Dillon AJP, Kyaw CM, et al. Cloning, characterization and heterologous expression of the first Penicillium echinulatum cellulase gene. J Appl Microbiol. 2010;108:1187–1198.
  • Zheng F, Tu T, Wang X, et al. Enhancing the catalytic activity of a novel GH5 cellulase GtCel5 from Gloeophyllum trabeum CBS 900.73 by site-directed mutagenesis on loop 6. Biotechnol Biofuels. 2018;11:76.
  • Shahid ZH, Irfan M, Nadeem M, et al. Production, purification, and characterization of carboxymethyl cellulase from novel strain Bacillus megaterium. Environ Prog Sustain Energy. 2016;35:1741–1749.
  • Lee JP, Kim YA, Kim SK, et al. Characterization of a multimodular endo-β-1,4-Glucanase (Cel9K) from Paenibacillus sp. X4 with a potential additive for saccharification. J Microbiol Biotechnol. 2018;28:588–596.
  • Tan H, Miao R, Liu T, et al. A bifunctional cellulase-xylanase of a new Chryseobacterium strain isolated from the dung of a straw-fed cattle. Microb Biotechnol. 2018;11:381–398.
  • Song JM, Hong SK, An YJ, et al. Genetic and structural characterization of a thermo-tolerant, cold-active, and acidic endo-β-1,4-glucanase from Antarctic Springtail, Cryptopygus antarcticus. J Agric Food Chem. 2017;65:1630–1640.
  • Iyo AH, Forsberg CW. A cold-active glucanase from the ruminal bacterium Fibrobacter succinogenes S85. Appl Environ Microbiol. 1999;65:995–998.
  • Bai X, Yuan X, Wen A, et al. Cloning, expression and characterization of a cold-adapted endo-1, 4-β-glucanase from Citrobacter farmeri A1, a symbiotic bacterium of Reticulitermes labralis. PeerJ. 2016;4:e2679.
  • Zeng R, Xiong P, Wen J. Characterization and gene cloning of a cold-active cellulase from a deep-sea psychrotrophic bacterium Pseudoalteromonas sp. DY3. Extremophiles. 2006;10:79–82.
  • Matsuyama H, Kawasaki K, Yumoto I, et al. Microbacterium kitamiense sp. nov. a new polysaccharide-producing bacterium isolated from the wastewater of a sugar-beet factory. Int J Syst Bacteriol. 1999;49:1353–1357.
  • Valérie D, Czjzek M, Belaich A, et al. Crystal stucture of the catalytic domain of a bacterial cellulase belonging to family 5. Structure. 1995;3:939–949.
  • Heckman KL, Pease LR. Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc. 2007;2:924–932.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.
  • Arnold K, Bordoli L, Kopp J, et al. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22:195–201.
  • Bordoli L, Kiefer F, Arnold K, et al. Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc. 2009;4:1–13.
  • Shinya S, Nishimura S, Kitaoku Y, et al. Mechanism of chitosan recognition by CBM32 carbohydrate-binding modules from a Paenibacillus sp. IK-5 chitosanase/glucanase. Biochem J. 2016;473:1085–1095.
  • Marchler-Bauer A. CDD: a conserved domain database for protein classification. Nucleic Acids Res. 2005;33:192–196.
  • Lombard V, Golaconda Ramulu H, Drula E, et al. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:490–495.
  • Margesin R, Schinner F. Low-temperature bioremediation of a waste water contaminated with anionic surfactants and fuel oil. Appl Microbiol Biotechnol. 1998;49:482–486.
  • Yang J, Dang H. Cloning and characterization of a novel cold-active endoglucanase establishing a new subfamily of glycosyl hydrolase family 5 from a psychrophilic deep-sea bacterium. Fems Microbiol Lett. 2011;325:71–76.
  • Bhat A, Riyaz-Ul-Hassan S, Ahmad N, et al. Isolation of cold-active, acidic endocellulase from Ladakh soil by functional metagenomics. Extremophiles. 2013;17:229–239.
  • Ghadikolaei KK, Gharechahi J, Haghbeen K, et al. A cold-adapted endoglucanase from camel rumen with high catalytic activity at moderate and low temperatures: an anomaly of truly cold-adapted evolution in a mesophilic environment. Extremophiles. 2018;22:315–326.
  • Fu X, Liu P, Lin L, et al. A novel endoglucanase (Cel9P) from a marine bacterium Paenibacillus sp. BME14. Appl Biochem Biotechnol. 2010;160:1627–1636.
  • Deshpande MV. Ethanol production from cellulose by coupled saccharification/fermentation using Saccharomyces cerevisiae and cellulase complex from Sclerotium rolfsii UV-8 mutant. Appl Biochem Biotechnol. 1992;36:227–234.
  • Koshland D. Stereochemistry and the mechanism of enzymatic reactions. Biol Rev. 1953;28:416–436.