32,111
Views
148
CrossRef citations to date
0
Altmetric
Reviews

An overview of nanoemulsion: concepts of development and cosmeceutical applications

, ORCID Icon &
Pages 779-797 | Received 16 Jul 2018, Accepted 13 May 2019, Published online: 22 May 2019

References

  • Royer M, Prado M, García-Pérez ME. Study of nutraceutical, nutricosmetics and cosmeceutical potentials of polyphenolic bark extracts from Canadian forest species. PharmaNutrition. 2013;1:158–167.
  • Katz LM, Dewan K, Bronaugh RL. Nanotechnology in cosmetics. Food Chem Toxicol. 2015;85:127–137.
  • Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86:215–223.
  • Tadros T, Izquierdo P, Esquena J, et al. Formation and stability of nano-emulsions. Adv Colloid Interface Sci. 2004;108–109:303–318.
  • Mason TG, Wilking JN, Meleson K, et al. Nanoemulsions: formation, structure, and physical properties. J Phys: Condens Matter. 2006;18:R635–R666.
  • Singh Y, Meher JG, Raval K, et al. Nanoemulsion: concepts, development and applications in drug delivery. J Control Release. 2017;252:28–49.
  • Sonnevilleaubrun O. Nanoemulsions: a new vehicle for skincare products. Adv Colloid Interface Sci. 2004;108-109:145–149.
  • Bouchemal K, Briancon S, Perrier E, et al. Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimisation. Int J Pharm. 2004;280:241–251.
  • Tan SF, Masoumi HR, Karjiban RA, et al. Ultrasonic emulsification of parenteral valproic acid-loaded nanoemulsion with response surface methodology and evaluation of its stability. Ultrason Sonochem. 2016;29:299–308.
  • Dehghani F, Farhadian N, Golmohammadzadeh S, et al. Preparation, characterization and in-vivo evaluation of microemulsions containing tamoxifen citrate anti-cancer drug. Eur J Pharm Sci. 2017;96:479–489.
  • Maruno M, Rocha-Filho PAd. O/W Nanoemulsion after 15 years of preparation: a suitable vehicle for pharmaceutical and cosmetic applications. J Dispers Sci Technol. 2009;31:17–22.
  • Anton N, Vandamme TF. Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm Res. 2011;28:978–985.
  • Ngan CL, Basri M, Lye FF, et al. Comparison of Box–Behnken and central composite designs in optimization of fullerene loaded palm-based nano-emulsions for cosmeceutical application. Ind Crops Prod. 2014;59:309–317.
  • Al-Sabagh AM, Emara MM, Noor El-Din MR, et al. Formation of water-in-diesel oil nano-emulsions using high energy method and studying some of their surface active properties. Egypt J Pet. 2011;20:17–23.
  • Saberi AH, Fang Y, McClements DJ. Fabrication of vitamin E-enriched nanoemulsions: factors affecting particle size using spontaneous emulsification. J Colloid Interface Sci. 2013;391:95–102.
  • Anton N, Benoit J-P, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates – a review. J Control Release. 2008;128:185–199.
  • Becher P. Emulsions: theory and practice. New York (NY): Reinhold; 1965.
  • Schulman JH, Stoeckenius W, Prince LM. Mechanism of formation and structure of micro emulsions by electron microscopy. J Phys Chem. 1959;63:1677–1680.
  • Hoar T, Schulman J. Transparent water-in-oil dispersions: the oleopathic hydro-micelle. Nature. 1943;152:102.
  • Eastoe J. Surfactant chemistry. Bristol (UK): University of Bristol; 2003. Chapter 3, Microemulsions. Available from: http://www.chm.bris.ac.uk/eastoe/Surf_Chem/Surfactant.htm
  • Fofaria NM, Qhattal HS, Liu X, et al. Nanoemulsion formulations for anti-cancer agent piplartine – characterization, toxicological, pharmacokinetics and efficacy studies. Int J Pharm. 2016;498:12–22.
  • Solans C, Morales D, Homs M. Spontaneous emulsification. Curr Opin Colloid Interface Sci. 2016;22:88–93.
  • Care O, Corner C, Listing J, et al. Nanotechnology in cosmetics. Nanotechnology. 2017.
  • Yukuyama MN, Ghisleni DD, Pinto TJ, et al. Nanoemulsion: process selection and application in cosmetics – a review. Int J Cosmet Sci. 2016;38:13–24.
  • Mu L, Sprando RL. Application of nanotechnology in cosmetics. Pharm Res. 2010;27:1746–1749.
  • Weir A, Westerhoff P, Fabricius L, et al. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol. 2012;46:2242–2250.
  • Mayer S, Weiss J, McClements DJ. Vitamin E-enriched nanoemulsions formed by emulsion phase inversion: factors influencing droplet size and stability. J Colloid Interface Sci. 2013;402:122–130.
  • Costa R, Santos L. Delivery systems for cosmetics – from manufacturing to the skin of natural antioxidants. Powder Technol. 2017;322:402–416.
  • Boonme P, Junyaprasert VB, Suksawad N, et al. Microemulsions and nanoemulsions: novel vehicles for whitening cosmeceuticals. J Biomed Nanotechnol. 2009;5:373–383.
  • Barry BW. Lipid-protein-partitioning theory of skin penetration enhancement. J Control Release. 1991;15:237–248.
  • Boonme P. Applications of microemulsions in cosmetics. J Cosmet Dermatol. 2007;6:223–228.
  • Kong M, Chen XG, Kweon DK, et al. Investigations on skin permeation of hyaluronic acid based nanoemulsion as transdermal carrier. Carbohydr Polym. 2011;86:837–843.
  • Kale SN, Deore SL. Emulsion micro emulsion and nano emulsion: a review. Syst Rev Pharm. 2016;8:39–47.
  • Talegaonkar S, Azeem A, Ahmad FJ, et al. Microemulsions: a novel approach to enhanced drug delivery. Recent Pat Drug Deliv Formul. 2008;2:238–257.
  • Gutiérrez JM, González C, Maestro A, et al. Nano-emulsions: new applications and optimization of their preparation. Curr Opin Colloid Interface Sci. 2008;13:245–251.
  • Siepmann J, Florence AT. Modern pharmaceutics. New York (NY): Informa Healthcare; 2009.
  • Mordor I. Cosmeceuticals market – segmented by product type (skin care, hair care, injectable, oral care), active ingredients (antioxidants, botanicals, exfoliants, peptides, retinoids), and regions – growth, trends, and forecast (2019–2024). Gachibowli, Hyderabad (India): Mordor Intelligence; 2018 [cited 2018 Nov 10]. Available from: https://www.mordorintelligence.com/industry-reports/globalcosmeceuticals-market-industry
  • Mihranyan A, Ferraz N, Strømme M. Current status and future prospects of nanotechnology in cosmetics. Prog Mater Sci. 2012;57:875–910. DOI:10.1016/j.pmatsci.2011.10.001.
  • Shah S, Solanki A, Lee K-B. Nanotechnology-based approaches for guiding neural regeneration. Acc Chem Res. 2016;49:17–26.
  • Elbadry MI, Espinoza JL, Nakao S. Induced pluripotent stem cell technology: a window for studying the pathogenesis of acquired aplastic anemia and possible applications. Exp Hematol. 2017;49:9–18.
  • Muñoz-Espí R, Álvarez-Bermúdez O. Nanoemulsions. Amsterdam (Netherlands): Elsevier; 2018. Application of nanoemulsions in the synthesis of nanoparticles; p. 477–515.
  • Morganti P. Use and potential of nanotechnology in cosmetic dermatology. Clin Cosmet Investig Dermatol. 2010;3:5–13.
  • Pathak K, Pattnaik S, Swain K. Nanoemulsions. Amsterdam (Netherlands): Elsevier; 2018. Application of nanoemulsions in drug delivery; p. 415–433.
  • L'Alloret F, Simonnet J-T. Aqueous photoprotective compositions comprising hydrophilic metal oxide nanopigments and vinylpyrrolidone homopolymers. Google Patents. 2010.
  • Chung BH, Lim YT, Kim JK, et al. Cosmetic pigment composition containing gold or silver nano-particles. Google Patents. 2009.
  • Gupta S. Zeolite based UV absorbing and sunscreen compositions. Google Patents. 2005.
  • Gupta S. Skin whitening methods and compositions based on zeolite-active oxygen donor complexes. Google Patents. 2007.
  • Jeong S-H, Son J-h, Jang S-J, et al. Cosmetic composition containing retinol stabilized by porous polymer beads and nanoemulsion. Google Patents. 2015.
  • Nanbu T. Skin-revitalizing cosmetic composition. Google Patents. 2009.
  • Yoo B, Kang B, Yeom M, et al. Nanoemulsion comprising metabolites of ginseng saponin as an active component and a method for preparing the same, and a skin-care composition for anti-aging containing the same. Google Patents. 2003.
  • Watson M, Holman DM, Maguire-Eisen M. Ultraviolet radiation exposure and its impact on skin cancer risk. Semin Oncol Nurs. 2016;32:241–254.
  • Oliveira CAd, Peres DDA, Graziola F, et al. Cutaneous biocompatible rutin-loaded gelatin-based nanoparticles increase the SPF of the association of UVA and UVB filters. Eur J Pharm Sci. 2016;81:1–9. DOI:10.1016/j.ejps.2015.09.016.
  • Morabito K, Shapley NC, Steeley KG, et al. Review of sunscreen and the emergence of non-conventional absorbers and their applications in ultraviolet protection. Int J Cosmet Sci. 2011;33:385–390.
  • Shi L, Shan J, Ju Y, et al. Nanoparticles as delivery vehicles for sunscreen agents. Colloids Surf A: Physicochem Eng Aspects. 2012;396:122–129.
  • Lu P-J, Huang S-C, Chen Y-P, et al. Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics. J Food Drug Anal. 2015;23:587–594.
  • Muller RH, Petersen RD, Hommoss A, et al. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev. 2007;59:522–530.
  • Das S, Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech. 2011;12:62–76.
  • Wissing SA, Müller RH. Cosmetic applications for solid lipid nanoparticles (SLN). Int J Pharm. 2003;254:65–68.
  • Wissing SA, Müller RH. Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in vivo skin penetration. J Control Release. 2002;81:225–233.
  • Wissing SA, Müller RH. The development of an improved carrier system for sunscreen formulations based on crystalline lipid nanoparticles. Int J Pharm. 2002;242:373–375.
  • Villalobos-Hernández JR, Müller-Goymann CC. Physical stability, centrifugation tests, and entrapment efficiency studies of carnauba wax–decyl oleate nanoparticles used for the dispersion of inorganic sunscreens in aqueous media. Eur J Pharm Biopharm. 2006;63:115–127.
  • Smijs TG, Pavel S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness. Nanotechnol Sci Appl. 2011;4:95.
  • Lephart ED. Skin aging and oxidative stress: Equol's anti-aging effects via biochemical and molecular mechanisms. Ageing Res Rev. 2016;31:36–54.
  • Ribeiro RC, Barreto SM, Ostrosky EA, et al. Production and characterization of cosmetic nanoemulsions containing Opuntia ficus-indica (L.) mill extract as moisturizing agent. Molecules. 2015;20:2492–2509.
  • Tobin DJ. Introduction to skin aging. J Tissue Viability. 2017;26:37–46.
  • Chang AL. Expanding our understanding of human skin aging. J Invest Dermatol. 2016;136:897–899.
  • Kammeyer A, Luiten RM. Oxidation events and skin aging. Ageing Res Rev. 2015;21:16–29.
  • Masaki H. Role of antioxidants in the skin: anti-aging effects. J Dermatol Sci. 2010;58:85–90.
  • Menaa F, Menaa A, Tréton J. Polyphenols against skin aging. Polyphen Hum Health Dis. 2014;1:819–830.
  • Boldyrev AA, Gallant SC, Sukhich GT. Carnosine, the protective, anti-aging peptide. Biosci Rep. 1999;19:581–587.
  • Sorg O, Antille C, Kaya G, et al. Retinoids in cosmeceuticals. Dermatol Ther. 2006;19:289–296.
  • Ganceviciene R, Liakou AI, Theodoridis A, et al. Skin anti-aging strategies. Dermatoendocrinology. 2012;4:308–319.
  • Pardeike J, Hommoss A, Muller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm. 2009;366:170–184.
  • Harisa GI, Badran MM, Alanazi FK, et al. An overview of nanosomes delivery mechanisms: trafficking, orders, barriers and cellular effects. Artif Cells Nanomed Biotechnol. 2018;46:669–679.
  • Chung YJ, Kim YD, Kim CR. Peptides for promoting hair growth and improving wrinkle and cosmetic compositions comprising the same. Google Patents. 2012.
  • Kafi R, Kwak HR, Schumacher WE, et al. Improvement of naturally aged skin with vitamin a (retinol). Arch Dermatol. 2007;143:606–612.
  • Mukherjee S, Date A, Patravale V, et al. Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety. Clin Intervent Aging. 2006;1:327–348.
  • Lohani A, Verma A, Joshi H, et al. Nanotechnology-based cosmeceuticals. ISRN Dermatol. 2014;2014:1.
  • Peng L-C, Liu C-H, Kwan C-C, et al. Optimization of water-in-oil nanoemulsions by mixed surfactants. Colloids Surf A: Physicochem Eng Aspects. 2010;370:136–142.
  • Kubitschek KA, Zero JM. Development of jojoba oil (Simmondsia chinensis (Link) CK Schneid.) based nanoemulsions. Lat Am J Pharm. 2014;33:459–463.
  • Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother. 2004;58:173–182.
  • Morais GG, Santos ODH, Oliveira WP, et al. Attainment of O/W emulsions containing liquid crystal from annatto oil (Bixa orellana), coffee oil, and tea tree oil (Melaleuca alternifolia) as oily phase using HLB system and ternary phase diagram. J Dispers Sci Technol. 2008;29:297–306.
  • Americas I. The HLB system: a time-saving guide to emulsifier selection. Wilmington (DE): ICI Americas, Incorporated; 1984.
  • Uskoković V, Drofenik M. Synthesis of materials within reverse micelles. Surf Rev Lett. 2005;12:239–277.
  • Tata M, Banerjee S, John VT, et al. Fluorescence quenching of CdS nanocrystallites in AOT water-in-oil microemulsions. Colloids Surf A: Physicochem Eng Aspects. 1997;127:39–46.
  • Liu M, Gan L, Pang Y, et al. Synthesis of titania–silica aerogel-like microspheres by a water-in-oil emulsion method via ambient pressure drying and their photocatalytic properties. Colloids Surf A: Physicochem Eng Aspects. 2008;317:490–495.
  • Porras M, Martínez A, Solans C, et al. Ceramic particles obtained using W/O nano-emulsions as reaction media. Colloids Surf A: Physicochem Eng Aspects. 2005;270:189–194.
  • Aucouturier J, Dupuis L, Deville S, et al. Montanide ISA 720 and 51: a new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev Vaccines. 2002;1:111–118.
  • Chen F, Liang L, Zhang Z, et al. Inhibition of lipid oxidation in nanoemulsions and filled microgels fortified with omega-3 fatty acids using casein as a natural antioxidant. Food Hydrocolloids. 2017;63:240–248.
  • McClements DJ. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter. 2012;8:1719–1729.
  • Ahmed K, Li Y, McClements DJ, et al. Nanoemulsion- and emulsion-based delivery systems for curcumin: encapsulation and release properties. Food Chem. 2012;132:799–807.
  • Solans C, Izquierdo P, Nolla J, et al. Nano-emulsions. Curr Opin Colloid Interface Sci. 2005;10:102–110.
  • Winsor P. Hydrotropy, solubilisation and related emulsification processes. Trans Faraday Soc. 1948;44:376–398.
  • Kumar S, Singh V. Nanoemulsification – a novel targeted drug delivery tool. Journal of Drug Delivery and Therapeutics. 2012;2:40–45.
  • López-Montilla JC, Herrera-Morales PE, Pandey S, et al. Spontaneous emulsification: mechanisms, physicochemical aspects, modeling, and applications. J Dispers Sci Technol. 2002;23:219–268.
  • Solans C, Solé I. Nano-emulsions: formation by low-energy methods. Curr Opin Colloid Interface Sci. 2012;17:246–254.
  • Maestro A, Solè I, González C, et al. Influence of the phase behavior on the properties of ionic nanoemulsions prepared by the phase inversion composition method. J Colloid Interface Sci. 2008;327:433–439.
  • D'Arrigo J. Aspects of future R&D regarding targeted lipid nanoemulsions. Stud Interface Sci. 2011;25:333–342.
  • Koroleva MY, Yurtov EV. Nanoemulsions: the properties, methods of preparation and promising applications. Russ Chem Rev. 2012;81:21–43.
  • Maali A, Mosavian M. Preparation and application of nanoemulsions in the last decade (2000–2010). J Dispers Sci Technol. 2013;34:92–105.
  • Kotta S, Khan AW, Ansari SH, et al. Formulation of nanoemulsion: a comparison between phase inversion composition method and high-pressure homogenization method. Drug Deliv. 2015;22:455–466.
  • Yang HJ, Cho WG, Park SN. Stability of oil-in-water nano-emulsions prepared using the phase inversion composition method. J Ind Eng Chem. 2009;15:331–335. DOI:10.1016/j.jiec.2009.01.001.
  • Usón N, Garcia MJ, Solans C. Formation of water-in-oil (W/O) nano-emulsions in a water/mixed non-ionic surfactant/oil systems prepared by a low-energy emulsification method. Colloids Surf A: Physicochem Eng Aspects. 2004;250:415–421.
  • Solè I, Pey CM, Maestro A, et al. Nano-emulsions prepared by the phase inversion composition method: Preparation variables and scale up. J Colloid Interface Sci. 2010;344:417–423.
  • Solè I, Maestro A, Pey CM, et al. Nano-emulsions preparation by low energy methods in an ionic surfactant system. Colloids Surf A: Physicochem Eng Aspects. 2006;288:138–143.
  • Heunemann P, Prévost S, Grillo I, et al. Formation and structure of slightly anionically charged nanoemulsions obtained by the phase inversion concentration (PIC) method. Soft Matter. 2011;7:5697–5710.
  • Pan H, Yu L, Xu J, et al. Preparation of highly stable concentrated W/O nanoemulsions by PIC method at elevated temperature. Colloids Surf A: Physicochem Eng Aspects. 2014;447:97–102.
  • Agrawal N, Maddikeri GL, Pandit AB. Sustained release formulations of citronella oil nanoemulsion using cavitational techniques. Ultrason Sonochem. 2017;36:367–374. DOI:10.1016/j.ultsonch.2016.11.037.
  • Rao J, McClements DJ. Stabilization of phase inversion temperature nanoemulsions by surfactant displacement. J Agric Food Chem. 2010;58:7059–7066.
  • Izquierdo P, Esquena J, Tadros TF, et al. Phase behavior and nano-emulsion formation by the phase inversion temperature method. Langmuir. 2004;20:6594–6598.
  • Miller C. In: Sjoblom J, editor. Emulsions and emulsion stability. Boca Raton (FL): CRC Press; 2006.
  • Fernandez P, André V, Rieger J, et al. Nano-emulsion formation by emulsion phase inversion. Colloids Surf A: Physicochem Eng Aspects. 2004;251:53–58.
  • Bucak S, Rende D. Colloid and surface chemistry: a laboratory guide for exploration of the nano world. Boca Raton (FL): CRC Press; 2013.
  • Shinoda K, Arai H. The correlation between phase inversion temperature in emulsion and cloud point in solution of nonionic emulsifier. J Phys Chem. 1964;68:3485–3490.
  • Izquierdo P, Esquena J, Tadros TF, et al. Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir. 2002;18:26–30.
  • Teo SY, Yew MY, Lee SY, et al. In vitro evaluation of novel phenytoin-loaded alkyd nanoemulsions designed for application in topical wound healing. J Pharm Sci. 2017;106:377–384.
  • Rai VR, Bai JA. Nanotechnology applications in the food industry. Boca Raton (FL): CRC Press; 2018.
  • Ruiz-Montañez G, Ragazzo-Sanchez JA, Picart-Palmade L, et al. Optimization of nanoemulsions processed by high-pressure homogenization to protect a bioactive extract of jackfruit (Artocarpus heterophyllus Lam). Innov Food Sci Emerg Technol. 2017;40:35–41.
  • Ricaurte L, Perea-Flores MJ, Martinez A, et al. Production of high-oleic palm oil nanoemulsions by high-shear homogenization (microfluidization). Innov Food Sci Emerg Technol. 2016;35:75–85.
  • Kaur K, Kumar R, Arpita, et al. Physiochemical and cytotoxicity study of TPGS stabilized nanoemulsion designed by ultrasonication method. Ultrason Sonochem. 2017;34:173–182.
  • Floury J, Desrumaux A, Axelos MA, et al. Effect of high pressure homogenisation on methylcellulose as food emulsifier. J Food Eng. 2003;58:227–238.
  • Meleson K, Graves S, Mason TG. Formation of concentrated nanoemulsions by extreme shear. Soft Mater. 2004;2:109–123.
  • Utomo AT, Baker M, Pacek AW. Flow pattern, periodicity and energy dissipation in a batch rotor–stator mixer. Chem Eng Res Des. 2008;86:1397–1409.
  • Maa Y-F, Hsu C. Liquid-liquid emulsification by rotor/stator homogenization. J Control Release. 1996;38:219–228.
  • Perrier-Cornet JM, Marie P, Gervais P. Comparison of emulsification efficiency of protein-stabilized oil-in-water emulsions using jet, high pressure and colloid mill homogenization. J Food Eng. 2005;66:211–217.
  • Walstra P. Principles of emulsion formation. Chem Eng Sci. 1993;48:333–349.
  • Scholz P, Keck CM. Nanoemulsions produced by rotor-stator high speed stirring. Int J Pharm. 2015;482:110–117.
  • Jasińska M, Bałdyga J, Cooke M, et al. Specific features of power characteristics of in-line rotor–stator mixers. Chem Eng Process: Process Intensif. 2015;91:43–56.
  • Kraichnan RH. The structure of isotropic turbulence at very high Reynolds numbers. J Fluid Mech. 1959;5:497–543.
  • Stang M, Schuchmann H, Schubert H. Emulsification in high‐pressure homogenizers. Eng Life Sci. 2001;1:151–157.
  • Zahi MR, Wan P, Liang H, et al. Formation and stability of D-limonene organogel-based nanoemulsion prepared by a high-pressure homogenizer. J Agric Food Chem. 2014;62:12563–12569.
  • Sharma N, Mishra S, Sharma S, et al. Preparation and optimization of nanoemulsions for targeting drug delivery. Int J Drug Dev Res. 2013;5:37–48.
  • Sakulku U, Nuchuchua O, Uawongyart N, et al. Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int J Pharm. 2009;372:105–111.
  • Mehmood T, Ahmad A, Ahmed A, et al. Optimization of olive oil based O/W nanoemulsions prepared through ultrasonic homogenization: a response surface methodology approach. Food Chem. 2017;229:790–796.
  • Mehmood T. Optimization of the canola oil based vitamin E nanoemulsions stabilized by food grade mixed surfactants using response surface methodology. Food Chem. 2015;183:1–7.
  • Tang SY, Shridharan P, Sivakumar M. Impact of process parameters in the generation of novel aspirin nanoemulsions–comparative studies between ultrasound cavitation and microfluidizer. Ultrason Sonochem. 2013;20:485–497.
  • Kentish S, Wooster TJ, Ashokkumar M, et al. The use of ultrasonics for nanoemulsion preparation. Innov Food Sci Emerg Technol. 2008;9:170–175.
  • Shi Y, Li H, Li J, et al. Development, optimization and evaluation of emodin loaded nanoemulsion prepared by ultrasonic emulsification. J Drug Deliv Sci Technol. 2015;27:46–55.
  • Canselier J, Delmas H, Wilhelm A, et al. Ultrasound emulsification – an overview. J Dispers Sci Technol. 2002;23:333–349.
  • Jafari SM, He Y, Bhandari B. Production of sub-micron emulsions by ultrasound and microfluidization techniques. J Food Eng. 2007;82:478–488.
  • Zhang S, Zhang M, Fang Z, et al. Preparation and characterization of blended cloves/cinnamon essential oil nanoemulsions. LWT – Food Sci Technol. 2017;75:316–322.
  • Mahdi Jafari S, He Y, Bhandari B. Nano-emulsion production by sonication and microfluidization – a comparison. Int J Food Prop. 2006;9:475–485.
  • Basha SP, Rao KP, Vedantham C. A brief introduction to methods of preparation, applications and characterization of nanoemulsion drug delivery systems. Indian J Res Pharm Biotechnol. 2013;1:25.
  • Özgün S. Nanoemulsions in cosmetics. Anadolu Univ. 2013;1:3–11.
  • Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: an advanced mode of drug delivery system. 3 Biotech. 2015;5:123–127.
  • Reineccius G. Flavour manufacturing. In: Source book of flavours. London: Chapman & Hall; 1994; p. 572–576.
  • Shen L, Tang C-H. Microfluidization as a potential technique to modify surface properties of soy protein isolate. Food Res Int. 2012;48:108–118.
  • Thakur A, Walia MK, Kumar S. Nanoemulsion in enhancement of bioavailability of poorly soluble drugs: a review. Pharmacophore. 2013;4:15–25.
  • Lee L, Norton IT. Comparing droplet breakup for a high-pressure valve homogeniser and a Microfluidizer for the potential production of food-grade nanoemulsions. J Food Eng. 2013;114:158–163.
  • Towbin H, Pignat W, Wiesenberg I. Time-dependent cytokine production in the croton oil-induced mouse ear oedema and inhibition by prednisolone. Inflamm Res. 1995;44:S160–S161.
  • Ghareeb MM, Neamah AJ. Formulation and characterization of nimodipine nanoemulsion as ampoule for oral route. Int J Pharm Sci Res. 2017;8:591.
  • McClements DJ. Critical review of techniques and methodologies for characterization of emulsion stability. Crit Rev Food Sci Nutr. 2007;47:611–649.
  • Choi A-J, Kim C-J, Cho Y-J, et al. Characterization of capsaicin-loaded nanoemulsions stabilized with alginate and chitosan by self-assembly. Food Bioprocess Technol. 2011;4:1119–1126.
  • Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems – a review (Part 1). Trop J Pharm Res. 2013;12:255–264.
  • Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems – a review (Part 2). Trop J Pharm Res. 2013;12:265–273.
  • Wissing S, Kayser O, Müller R. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev. 2004;56:1257–1272.
  • He W, Tan Y, Tian Z, et al. Food protein-stabilized nanoemulsions as potential delivery systems for poorly water-soluble drugs: preparation, in vitro characterization, and pharmacokinetics in rats. Int J Nanomed. 2011;6:521.
  • Chime SA, Kenechukwu FC, Attama AA. Nanoemulsions – advances in formulation, characterization and applications in drug delivery. In: Sezer AD, editor. Application of nanotechnology in drug delivery. Rijeka: InTech; 2014. p. Ch. 03.
  • Sharma N, Bansal M, Visht S, et al. Nanoemulsion: a new concept of delivery system. Chron Young Sci. 2010;1:2.
  • Mishra RK, Soni G, Mishra R. A review article: on nanoemulsion. World J Pharm Pharm Sci. 2014;258–276.
  • Kumar M, Pathak K, Misra A. Formulation and characterization of nanoemulsion-based drug delivery system of risperidone. Drug Dev Ind Pharm. 2009;35:387–395.
  • Kelmann RG, Kuminek G, Teixeira HF, et al. Carbamazepine parenteral nanoemulsions prepared by spontaneous emulsification process. Int J Pharm. 2007;342:231–239.
  • Kabri T-h, Arab-Tehrany E, Belhaj N, et al. Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3. J Nanobiotechnol.. 2011;9:41.
  • Azeem A, Rizwan M, Ahmad FJ, et al. Nanoemulsion components screening and selection: a technical note. AAPS PharmSciTech. 2009;10:69–76.
  • da Rocha Neto AC, de Oliveira da Rocha AB, Maraschin M, et al. Factors affecting the entrapment efficiency of β-cyclodextrins and their effects on the formation of inclusion complexes containing essential oils. Food Hydrocolloids. 2018;77:509–523. DOI:10.1016/j.foodhyd.2017.10.029.
  • Yue P-F, Lu X-Y, Zhang Z-Z, et al. The study on the entrapment efficiency and in vitro release of puerarin submicron emulsion. AAPS PharmSciTech. 2009;10:376–383.
  • Rachmadi UW, Permatasari D, Rahma A, et al. Self-nanoemulsion containing combination of curcumin and silymarin: formulation and characterization. Res Dev Nanotechnol Indones. 2015;2:37–48.
  • Michalowski C, Guterres S, Dalla Costa T. Microdialysis for evaluating the entrapment and release of a lipophilic drug from nanoparticles. J Pharm Biomed Anal. 2004;35:1093–1100.
  • Hammes C. Cosmeceuticals: The cosmetic-drug borderline. Drug discovery approaches for developing cosmeceuticals: advanced skin care and cosmetic products. Southborough: IBC Library Series. 1997.
  • Millikan LE. Cosmetology, cosmetics, cosmeceuticals: definitions and regulations. Clin Dermatol. 2001;19:371–374.
  • Kaul S, Gulati N, Verma D, et al. Role of nanotechnology in cosmeceuticals: a review of recent advances. J Pharm. 2018;2018:3420204.