5,046
Views
10
CrossRef citations to date
0
Altmetric
Articles

Screening of plant growth promoting bacteria (PGPB) from rhizosphere and bulk soil of Caragana microphylla in different habitats and their effects on the growth of Arabidopsis seedlings

, , , , , , & show all
Pages 921-930 | Received 04 Mar 2019, Accepted 05 Jun 2019, Published online: 17 Jun 2019

References

  • Reynolds JF, Smith DMS, Lambin EF, et al. Global desertification: building a science for dry land development. Science. 2007;316:847–851.
  • Zhao HL, Zhou RL, Su YZ, et al. Shrub facilitation of desert land restoration in the Horqin Sand Land of Inner Mongolia. Ecol Eng. 2007;31:1–8.
  • Li XH, Jiang DM, Luo YM. Soil fertile islands of shrub canopy and impacts on vegetation in chronosequence of Caragana microphylla. J Liaoning Tech Univ. 2010;49:830–838.
  • Cao C, Abulajiang Y, Zhang Y, et al. Assessment of the effects of phytogenic nebkhas on soil nutrient accumulation and soil microbiological property improvement in semi-arid sandy land. Ecol Eng. 2016;91:582–589.
  • Hussain Q, Liu Y, Zhang A, et al. Variation of bacterial and fungal community structures in the rhizosphere of hybrid and standard rice cultivars and linkage to CO2 flux. FEMS Microbiol Ecol. 2011;78:116–128.
  • Hayat R, Ali S, Amara U, et al. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol. 2010;60:579–598.
  • Tabassum B, Khan A, Tariq M, et al. Bottlenecks in commercialisation and future prospects of PGPR. Appl Soil Ecol. 2017;121:102–117.
  • Baha N, Bekki A. An approach of improving plant salt tolerance of Lucerne (Medicago sativa) grown under salt stress: use of Bio-inoculants. J Plant Growth Regul. 2015;34:169–182.
  • Delshadi S, Ebrahimi M, Shirmohammadi E. Effectiveness of plant growth promoting rhizobacteria on Bromus tomentellus Boiss seed germination, growth and nutrients uptake under drought stress. S Afr J Bot. 2017;113:11–18.
  • Yue HT, Mo WP, Li C, et al. The salt stress relief and growth promotion effect of Rs-5 on cotton. Plant Soil. 2007;297:139–145.
  • Rajkumar M, Ae N, Prasad MN, et al. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 2010;28:142–149.
  • Figueiredo M, Seldin L, de Araujo FF, et al. Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK, editor. Plant growth and health promoting bacteria. Berlin: Springer; 2011. p. 21–43.
  • Zaidi A, Khan MS, Ahemad M, et al. Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung. 2009;56:263–284.
  • Kudoyarova GR, Vysotskaya LB, Arkhipova TN, et al. Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants. Acta Physiol Plant. 2017;39:253.
  • Werner D. Production and biological nitrogen fixation of tropical legumes. In: Werner D, Newton WE. Nitrogen fixation in agriculture, forestry, ecology, and the environment. Netherlands: Springer; 2005. p. 1–13.
  • Massimo NC, Devan MMN, Arendt KR, et al. Fungal endophytes in above ground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts. Microb Ecol. 2015;70:61–76.
  • Su H, Li YG, Lan ZJ, et al. Leaf-level plasticity of Salix gordejevii in fixed dunes compared with lowlands in Hunshandake Sandland, North China. J Plant Res. 2009;122:611–622.
  • Yan QL, Liu ZM, Ma JL, et al. The role of reproductive phenology, seedling emergence and establishment of perennial Salix gordejevii in active sand dune fields. Ann Bot-Lond. 2007;99:19–28.
  • Zhao HL, Liu RT. The “bug island” effect of shrubs and its formation mechanism in horqin sand land, Inner Mongolia. Catena. 2013;105:69–74.
  • Hijmans RJ, Cameron SE, Parra JL, et al. TheWorldClim interpolated global terrestrial climate surfaces [Internet]. Version 1.3. Berkeley: University of California; 2004 [cited 2019 May 31]. Available from: http://biogeo.berkeley.edu/worldclim/worldclim.htm
  • Koranda M, Schnecker J, Kaiser C, et al. Microbial processes and community composition in the rhizosphere of European beech-The influence of plant C exudates. Soil Biol Biochem. 2011;43:551–558.
  • Gomes NCM, Fagbola O, Costa R, et al. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl Environ Microbiol. 2003;69:3758–3766.
  • Smith KA. Soil analysis: instrumental techniques and related procedures. New York (NY): Dekker; 1983.
  • Trivedi P, Spann T, Wang N. Isolation and characterization of beneficial bacteria associated with citrus roots in Florida. Microb Ecol. 2011;62:324–336.
  • Moreno C, Romero J, Espejo RT. Polymorphism in repeated 16S rRNA genes is a common property of type strains and environmental isolates of the genus Vibrio. Microbiology. 2002;148:1233–1239.
  • Wertz JT, Kim E, Breznak JA, et al. Genomic and physiological characterization of the verrucomicrobia isolate Diplosphaeracolitermitum gen. nov., sp nov., reveals microaerophily and nitrogen fixation genes. Appl Environ Microbiol. 2012;78:1544–1555.
  • Subba Rao NS. Advances in agricultural microbiology. Kent: Butterworth Scientific; 1982.
  • Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987;160:47–56.
  • Alexander DB, Zuberer DA. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fert Soils. 1991;12:39–45.
  • Dworkin M, Foster JW. Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol. 1958;75:592–603.
  • O'Hara GW, Goss TJ, Dilworth MJ, et al. Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Appl Environ Microbiol. 1989;55:1870–1876.
  • Neilson JW, Quade J, Ortiz M, et al. Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles. 2012;16:553–566.
  • Singh BK, Munro S, Potts JM, et al. Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Appl Soil Ecol. 2007;36:147–155.
  • Fierer N, Lauber CL, Ramirez KS, et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012;6:1007–1017.
  • Fonseca-García C, Coleman-Derr D, Garrido E, et al. The cacti microbiome: interplay between habitat-filtering and host-specificity. Front Microbiol. 2016;7:150–166.
  • Nicolitch O, Colin Y, Turpault MP, et al. Tree roots select specific bacterial communities in the subsurface critical zone. Soil Biol Biochem. 2017;115:109–123.
  • Coleman-Derr D, Desgarennes D, Fonseca-García C, et al. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol. 2016;209:798–811.
  • Zamioudis C, Mastranesti P, Dhonukshe P, et al. Unraveling root developmental programs initiated by beneficial Pseudomonas spp. Bacteria. Plant Physiol. 2013;162:304–318.
  • Wang J, Zhang Y, Li Y, et al. Endophytic microbes Bacillus sp. LZR216-regulated root development is dependent on polar auxin transport in Arabidopsis seedlings. Plant Cell Rep. 2015;34:1075–1087.
  • Walker V, Couillerot O, Felten A, et al. Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomusconsortium under field conditions. Plant Soil. 2012;356:151–163.
  • Barea JM, Pozo MJ, Azcon R, et al. Microbial co-operation in the rhizosphere. J Exp Bot. 2005;56:1761–1778.