5,372
Views
5
CrossRef citations to date
0
Altmetric
Articles

Thermo-and salt-tolerant Saccharomyces cerevisiae strains isolated from fermenting coconut toddy from Sri Lanka

, &
Pages 937-944 | Received 17 Jan 2019, Accepted 08 Jun 2019, Published online: 10 Jul 2019

References

  • Hui Y, Evranuz E, eds. Handbook of plant-based fermented food and beverage technology. 2nd ed. New York: CRC Press; 2012.
  • Vidanapathirana S, Atputharajah J, Samarajeewa U. Microbiology of coconut sap fermentation. Vidyodaya J Arts Sci Lett. 1983;11:35–39.
  • Kapilan R, Kailayalingam R, Mahilrajan S. Determination of efficient fermentation inhibitor of sweet sap of Cocos Nucifera and optimization of concentration for quality outputs in Northern Sri Lanka. Int J Sci Res Agric Sci. 2015;2:166–174.
  • Ghosh DK, Bandyopadhyay A, Das S, et al. Coconut sap (Neera) - untapped opportunity of spinoff gains in West Bengal, India. Int J Curr Microbiol Appl Sci. 2018;7:1883–1897.
  • Perumpuli P, Watanabe T, Toyama H. Identification and characterisation of thermotolerant acetic acid bacteria strains isolated from coconut water vinegar in Sri Lanka. Biosci Biotechnol Biochem. 2014;78:37–41.
  • Shetty P, D’Souza A, Poojari S, et al. Study of fermentation kinetics of palm sap from Cocos nucifera. Int J Appl Sci Biotechnol. 2017;5:375–381.
  • Harries HC. Coconut - Milk bottle on the doorstep of mankind; Chapter II.E.2. In: Kiple KF, Ornelas KC, editors. The Cambridge world history of food. Cambridge (UK): Cambridge University Press; 2000. p. 388–397.
  • Walker G, Stewart G. Saccharomyces cerevisiae in the production of fermented beverages. Beverages. 2016;2:30.
  • Azhar SHM, Abdulla R, Jambo SA, et al. Yeasts in sustainable bioethanol production: A review. Biochem Biophys Reports. 2017;10:52–61.
  • Wijeyaratne SC. Temperature tolerance and other properties of two ethanol producing Saccharomyces cerevisiae strains isolated from coconut toddy. J Nat Sci Found Sri Lanka. 1998;26:77–91.
  • Kurtzman CP, Robnett CJ. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5’ end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol. 1997;35:1216–1223.
  • Ameyama M. Enzymic microdetermination of D-glucose, D-fructose, D-gluconate, 2-keto-D-gluconate, aldehyde, and alcohol with membrane-bound dehydrogenase; carbohydrate metabolism. In: Wood WA, editor. Methods in enzymology; vol. 89. Michigan: Elsevier Academic Press; 1982. p. 20–29.
  • Zhang Q, Huo N, Wang Y, et al. Aroma-enhancing role of Pichia manshurica isolated from Daqu in the brewing of Shanxi Aged Vinegar. Int J Food Prop. 2017;20:2169–2179.
  • Vejarano R. Saccharomycodes ludwigii, Control and potential uses in winemaking processes. Fermentation. 2018;4:71.
  • Jayathilake AN, Wijeyatatne SC. Biochemical and microbiological changes of Caryota urens (Kithul palm) phloem sap. Vidyodaya J Sci. 1999;8:91–108.
  • Theivendirarajah K, Chrystopher RK. Microflora and microbial activity in palmyrah (Borassus flabellifer) palm wine in Sri Lanka. Mircen J. 1987;3:23–31.
  • Ezemba CC, Archibong EJ. Comparative Studies of wine produced from coconut (Cocos nucifera) and mango fruit (Mangifera indica) using yeast isolated from palm wine. Int J Res Pharm Biosci. 2017;4:44–49.
  • Olowonibi OO. Isolation and characterization of palm wine strains of Saccharomyces cerevisiae potentially useful as bakery yeasts. Eur J Exp Biol. 2017;07:1–13.
  • Udomsaksakul N, Kodama K. Indigenous Saccharomyces cerevisiae strains from coconut inflorescence sap: characterization and use in coconut wine fermentation. CMU J Nat Sci. 2018;17:219–230.
  • Abdel-Nasser A. El-Moghaz Comparative study of salt tolerance in Saccharomyces cerevisiae and Pichia pastoris yeast strains. Adv Bioresour. 2010;1:169–176.
  • Tekarslan-Sahin SH, Alkim C, Sezgin T. Physiological and transcriptomic analysis of a salt-resistant Saccharomyces cerevisiae mutant obtained by evolutionary engineering. Bosn J Basic Med Sci. 2018;18:55–65.
  • Mager W, Siderius M. Novel insights into the osmotic stress response of yeast. FEMS Yeast Res. 2002;2:251–257.
  • Logothetis S, Walker GM, Nerantzis ET. Effect of salt hyperosmotic stress on yeast cell viability. Zb Mat Srp Prir Nauk. 2007;2007:271–284.
  • Beney L, Martínez De Marañón I, Marechal PA, et al. Influence of thermal and osmotic stresses on the viability of the yeast Saccharomyces cerevisiae. Int J Food Microbiol. 2000;55:275–279.
  • Babazadeh R, Lahtvee PJ, Adiels CB, et al. The yeast osmostress response is carbon source dependent. Sci Rep. 2017;7:1–11.
  • Herdeiro RS, Pereira MD, Panek AD, et al. Trehalose protects Saccharomyces cerevisiae from lipid peroxidation during oxidative stress. Biochim Biophys Acta - Gen Subj. 2006;1760:340–346.
  • Belloch C, Orlic S, Barrio E, et al. Fermentative stress adaptation of hybrids within the Saccharomyces sensu stricto complex. Int J Food Microbiol. 2008;122:188–195.
  • Techaparin A, Thanonkeo P, Klanrit P. High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion. Braz J Microbiol. 2017;48:461–475.
  • Caspeta L, Nielsen J. Thermotolerant yeast strains adapted by laboratory evolution show trade-off at ancestral temperatures and preadaptation to other stresses. MBio. 2015;6:1–9.
  • Charlebois DA, Hauser K, Marshall S, et al. Multiscale effects of heating and cooling on genes and gene networks. Proc Natl Acad Sci USA. 2018;115:E10797–E10806.
  • Banat IM, Nigam P, Marchant R. Isolation of thermotolerant, fermentative yeasts growing at 52 °C and producing ethanol at 45 °C and 50 °C. World J Microbiol Biotechnol. 1992;8:259–263.
  • Morano KA, Grant CM, Moye-Rowley WS. The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics. 2012;190:1157–1195.
  • Cunha JT, Romaní A, Costa CE. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions. Appl Microbiol Biotechnol. 2018;159–175.
  • Krouwel PG, Braber L. Ethanol production by yeast at supraoptimal temperatures. Biotechnol Lett. 1979;1:403–408.