2,969
Views
17
CrossRef citations to date
0
Altmetric
Articles

Isolation, characterization and molecular identification of a halotolerant Bacillus megaterium CTBmeg1 able to grow on halogenated compounds

&
Pages 945-953 | Received 08 Mar 2019, Accepted 10 Jun 2019, Published online: 22 Jun 2019

References

  • Oren A, Gurevich P, Azachi M, et al. Microbial degradation of pollutants at high salt concentrations. Biodegradation. 1992;3:387–398.
  • Le Borgne S, Paniagua D, Vazquez-Duhalt R. Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol. 2008;15:74–92.
  • Duarte CM, Holmer M, Olsen Y, et al. Will the oceans help feed humanity?. Bioscience. 2009;59:967–976.
  • Besseling E, Wegner A, Foekema EM, et al. Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.). Environ Sci Technol. 2013;47:593–600.
  • Lin M, Hu X, Chen W, et al. Biodegradation of phenanthrene by Pseudomonas sp. BZ-3, isolated from crude oil contaminated soil. Int Biodeterior Biodegrad. 2014;94:176–181.
  • Anyasi RO, Atagana HI. Biological Remediation of polychlorinated biphenyls (PCB) in the environment by microorganisms and plants. Afr J Biotechnol. 2011;10:18916–18938.
  • Wei X, Jiang Y, Chen X, et al. Amycolatopsis flava sp. nov., a halophilic actinomycete isolated from dead sea. Antonie Van Leeuwenhoek. 2015;108:879–885.
  • Mehrshad M, Amoozegar MA, Makhdoumi A, et al. Halovarius luteus gen. nov., sp. nov., a novel extremely halophilic archaeon from Urmia salt lake, Iran. Int J Syst Evol Microbiol. 2015;65:2420–2425.
  • Baati H, Amdouni R, Gharsallah N, et al. Isolation and characterization of moderately halophilic bacteria from Tunisian solar saltern. Curr Microbiol. 2010;60:157–161.
  • Birbir M, Ogan A, Calli B, et al. Enzyme characteristics of extremely halophilic archaeal community in tuzkoy salt mine, Turkey. World J Microbiol Biotechnol. 2004;20:613–621.
  • Sanchez-Porro C, Martin S, Mellado E, et al. Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol. 2003;94:295–300.
  • Tazi L, Breakwell DP, Harker AR, et al. Life in extreme environments: microbial diversity in Great Salt Lake, Utah. Extremophiles. 2014;18:525–535.
  • Birbir M, Kalli N, Johannson C. Examination of salt quality of Sereflikochisar lake used in the Turkish leather industry. J Soc Leath Tech Chem. 2002;86:112–117.
  • Birbir M, Sesal C. Extremely halophilic bacterial communities in Şereflikoçhisar salt lake in Turkey. Turk J Biol. 2003;27:7–22.
  • Edbeib MF, Wahab RA, Huyop F. Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments. World J Microbiol Biotechnol. 2016;32:1–23.
  • Mongodin EF, Nelson KE, Daugherty S, et al. The genome of Salinibacter ruber: convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci USA. 2005;102:18147–18152.
  • Eisenberg H. Life in unusual environments: progress in understanding the structure and function of enzymes from extreme halophilic bacteria. Arch Biochem Biophys. 1995;318:1–5.
  • Karan R, Khare SK. Purification and characterization of a solvent-stable protease from Geomicrobium sp. Emb2. Environ Technol. 2010;31:1061–1072.
  • Gomes J, Steiner W. The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol. 2004;42:223–235.
  • Edbeib MF, Wahab RA, Kaya Y, et al. In silico characterization of a novel dehalogenase (DehHX) from the halophile Pseudomonas halophila HX isolated from Tuz Gölü lake, Turkey: insights into a hypersaline-adapted dehalogenase. Ann Microbiol. 2017;67:371–382.
  • Häggblom MM, Knight VK, Kerkhof LJ. Anaerobic decomposition of halogenated aromatic compounds. Environ Pollut. 2000;107:199–207.
  • Van Pée KH, Unversucht S. Biological dehalogenation and halogenation reactions. Chemosphere. 2003;52:299–312.
  • Shahidul Islam M, Tanaka M. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Mar Pollut Bull. 2004;48:624–649.
  • Birnbaum LS, Fenton SE. Cancer and developmental exposure to endocrine disruptors. Environ Health Perspect. 2003;111:389–394.
  • Qing Li Q, Loganath A, Seng Chong Y, et al. Persistent organic pollutants and adverse health effects in humans. Part A. J Toxicol Environ Health. 2006;69:1987–2005.
  • Hayes TB, Case P, Chui S, et al. Pesticide mixtures, endocrine disruption, and amphibian declines: are we underestimating the impact?. Environ Health Perspect. 2006;114:40–50.
  • Chiba Y, Yoshida T, Ito N, et al. Isolation of a bacterium possessing a haloacid dehalogenase from a marine sediment core. Microbes Environ. 2009;24:276–279.
  • Zhang J, Xin Y, Cao X, et al. Purification and characterization of 2-haloacid dehalogenase from marine bacterium Paracoccus sp. Deh99, isolated from marine sponge Hymeniacidon perlevis. J Ocean Univ China. 2014;13:91–96.
  • Novak HR, Sayer C, Isupov MN, et al. Biochemical and structural characterisation of a haloalkane dehalogenase from a marine Rhodobacteraceae. FEBS Lett. 2014;588:1616–1622.
  • Rye CA, Isupov MN, Lebedev AA, et al. Biochemical and structural studies of a l-haloacid dehalogenase from the thermophilic archaeon Sulfolobus tokodaii. Extremophiles. 2009;13:179–190.
  • Novak HR, Sayer C, Panning J, et al. Characterisation of an l-haloacid dehalogenase from the marine psychrophile Psychromonas ingrahamii with potential industrial application. Mar Biotechnol. 2013;15:695–705.
  • Drienovska I, Chovancova E, Koudelakova T, et al. Biochemical characterization of a novel haloalkane dehalogenase from a cold-adapted bacterium. Appl Environ Microbiol. 2012;78:4995–4998.
  • Oren A. Industrial and environmental applications of halophilic microorganisms. Environ Technol. 2010;31:825–834.
  • Yildiz M, Soğanci AS. Evaluation of geotechnical properties of the salt layers on the lake tuz. Sci Res Essays. 2010;5:2656–2663.
  • Hareland WA, Crawford RL, Chapman PJ, et al. Metabolic function and properties of 4-hydroxyphenylacetic acid 1-hydroxylase from Pseudomonas acidovorans. J Bacteriol. 1975;121:272–285.
  • Kloos WE, Tornabene TG, Schleifer KH. Isolation and characterization of micrococci from human skin, including two new species: Micrococcus lylae and Micrococcus kristinae. Int J Syst Bacteriol. 1974;24:79–101.
  • Garrity G, Boone DR, Castenholz RW. Bergey's manual of systematic bacteriology: Volume one: the Archaea and the deeply branching and phototrophic bacteria. New York: Springer; 2012.
  • Faller A, Schleifer KH. Modified oxidase and benzidine tests for separation of staphylococci from micrococci. J Clin Microbiol. 1981;13:1031–1035.
  • Colwell RR, Grigorova R. Current methods for classification and identification of microorganisms. Methods Microbiol. 1987;19:405–458.
  • Kumar S, Stecher G, Tamura K. Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–1874.
  • Feng N-X, Yu J, Mo C-H, et al. Biodegradation of di-n-butyl phthalate (DBP) by a novel endophytic Bacillus megaterium strain YJB3. Sci Total Environ. 2018;616:117–127.
  • Zhang J, Liu J, Meng L, et al. Isolation and characterization of plant growth-promoting rhizobacteria from wheat roots by wheat germ agglutinin labeled with fluorescein isothiocyanate. J Microbiol. 2012;50:191–198.
  • Liu M, Luo K, Wang Y, et al. Isolation, identification and characteristics of an endophytic quinclorac degrading bacterium Bacillus megaterium Q3. PLoS One. 2014;9:e108012.
  • Li W, Xie X, Shi Q, et al. A study of the microbes and efficiency of the preservative system of a sauce. China Condiment. 2009;9:43–46.
  • Edbeib MF, Wahab RA, Huyop F. Characterization of an α-haloalkanoic acid–degrading Pseudomonas aeruginosa MX1isolated from contaminated seawater. Bioremediat J. 2016;20:89–97.
  • Oren A. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst. 2008;4:2–14.
  • Litchfield CD, Gillevet PM. Microbial diversity and complexity in hypersaline environments: a preliminary assessment. J Ind Microbiol Biotechnol. 2002;28:48–55.
  • Oren A. Molecular ecology of extremely halophilic archaea and bacteria. FEMS Microbiol Ecol. 2002;39:1–7.
  • Garabito M, Márquez M, Ventosa A. Halotolerant bacillus diversity in hypersaline environments. Can J Microbiol. 1998;44:95–102.
  • Sorokin DY, Tourova TP, Galinski EA, et al. Extremely halophilic denitrifying bacteria from hypersaline inland lakes, Halovibrio denitrificans sp. nov. and Halospina denitrificans gen. nov., sp. nov., and evidence that the genus name Halovibrio fendrich 1989 with the type species Halovibrio variabi. Int J Syst Evol Microbiol. 2006;56:379–388.
  • Hill KE, Marchesi JR, Weightman AJ. Investigation of two evolutionarily unrelated halocarboxylic acid dehalogenase gene families. J Bacteriol. 1999;181:2535–2547.