1,293
Views
7
CrossRef citations to date
0
Altmetric
Articles

Evaluation of surfactant effect on β-poly(L-malic acid) production by Aureobasidium pullulans

, , , , &
Pages 954-966 | Received 17 Apr 2019, Accepted 10 Jun 2019, Published online: 22 Jun 2019

References

  • Chi Z, Liu G-L, Liu C-G. Poly(β-l-malic acid) (PMLA) from Aureobasidium spp. and its current proceedings. Appl Microbiol Biotechnol. 2016;100:3841–3851.
  • Li Y, Chi Z, Wang G-Y, et al. Taxonomy of Aureobasidium spp. and biosynthesis and regulation of their extracellular polymers. Crit Rev Microbiol. 2015;41:228–237.
  • Cao W, Luo J, Qi B, et al. β-poly(l-malic acid) production by fed-batch culture of Aureobasidium pullulans ipe-1 with mixed sugars. Eng Life Sci. 2014;14:180–189.
  • Ding H, Portilla-Arias J, Patil R, et al. The optimization of polymalic acid peptide copolymers for endosomolytic drug delivery. Biomaterials. 2011;32:5269–5278.
  • Tu G, Wang Y, Ji Y, et al. The effect of Tween 80 on the polymalic acid and pullulan production by Aureobasidium pullulans CCTCC M2012223. World J Microbiol Biotechnol. 2015;31:219–226.
  • Prajapati VD, Jani GK, Khanda SM. Pullulan: an exopolysaccharide and its various applications. Carbohydr Polym. 2013;95:540–549.
  • Cao W, Luo J, Zhao J, et al. Intensification of β-poly(l-malic acid) production by Aureobasidium pullulans ipe-1 in the late exponential growth phase. J Ind Microbiol Biotechnol. 2012;39:1073–1080.
  • Zhang H, Cai J, Dong J, et al. High-level production of poly (β-l-malic acid) with a new isolated Aureobasidium pullulans strain. Appl Microbiol Biotechnol. 2011;92:295–303.
  • Liang Y, Zhu L, Gao M, et al. Influence of Tween-80 on the production and structure of water-insoluble curdlan from Agrobacterium sp. Int J Biol Macromol. 2018;106:611–619.
  • Taoka Y, Nagano N, Okita Y, et al. Effect of Tween 80 on the growth, lipid accumulation and fatty acid composition of Thraustochytrium aureum ATCC 34304. J Biosci Bioeng. 2011;111:420–424.
  • Sheng L, Zhu G, Tong Q. Mechanism study of Tween 80 enhancing the pullulan production by Aureobasidium pullulans. Carbohydr Polym. 2013;97:121–123.
  • Xia Z. Effect of Tween 80 on the production of curdlan by Alcaligenes faecalis ATCC 31749. Carbohydr Polym. 2013;98:178–180.
  • Breuil C, Saddler JN. Comparison of the 3,5-dinitrosalicylic acid and Nelson-Somogyi methods of assaying for reducing sugars and determining cellulase activity. Enz Microb Technol. 1985;7:327–332.
  • Wang Y, Song X, Zhang Y, et al. Effects of nitrogen availability on polymalic acid biosynthesis in the yeast-like fungus Aureobasidium pullulans. Microb Cell Fact. 2016;15:146. [cited 2019 Jun 06]
  • Ingrid BH. Flow cytometric analysis of the LE cell phenomenon. Autoimmunity. 2004;37:37–44.
  • Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–917.
  • Shen Y, Liang J, Li H, et al. Hydroxypropyl-β-cyclodextrin-mediated alterations in cell permeability, lipid and protein profiles of steroid-transforming Arthrobacter simplex. Appl Microbiol Biotechnol. 2015;99:387–397.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.
  • Taoka Y, Nagano N, Okita Y, et al. Effect of addition of Tween 80 and potassium dihydrogenphosphate to basal medium on the isolation of marine eukaryotes, thraustochytrids. J Biosci Bioeng. 2008;105:562–565.
  • Dorrance AM, Graham D, Dominiczak A, et al. Inhibition of nitric oxide synthesis increases erythrocyte membrane fluidity and unsaturated fatty acid content. Am J Hypertens. 2000;13:1194–1202.
  • Mansour M. Plasma membrane permeability as an indicator of salt tolerance in plants. Biol Plant. 2013;57:1–10.
  • Buitendijk J. Nuclear DNA content in twelve species of Alstroemeria L. and some of their hybrids. Ann Bot. 1997;79:343–353.
  • Schulz LC, Bahr JM. Potential endocrine function of the glycolytic enzyme glucose-6-phosphate isomerase during implantation. Gen Comp Endocrinol. 2004;137:283–287.
  • Lucarelli G, Rutigliano M, Sanguedolce F, et al. Increased expression of the autocrine motility factor is associated with poor prognosis in patients with clear cell–renal cell carcinoma. Medicine. 2015;94:e2117.
  • Meile L, Rohr LM, Geissmann TA, et al. Characterization of the D-xylulose 5-phosphate/D-fructose 6-phosphate phosphoketolase gene (xfp) from Bifidobacterium lactis. J Bacteriol. 2001;183:2929.
  • Petrareanu G, Balasu MC, Zander U, et al. Preliminary X-ray crystallographic analysis of the D-Xylulose 5-phosphate phosphoketolase from Lactococcus lactis. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010;66:805–807.
  • Strachan J, Vidale P, Hodges K, et al. Reversible acetylation of a critical enzyme regulates glycolysis: regulation of glycolytic enzyme phosphoglycerate mutase-1 by Sirt1 protein-mediated deacetylation. J Biol Chem. 2012;287:3859.
  • Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–464.
  • Yin H, Zhang R, Xia M, et al. Effect of aspartic acid and glutamate on metabolism and acid stress resistance of Acetobacter pasteurianus. Microb Cell Fact. 2017;16:109.
  • Zelle RM, de Hulster E, van Winden WA, et al. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol. 2008;74:2766–2777.
  • Yang J, Yang W, Feng J, et al. Enhanced polymalic acid production from the glyoxylate shunt pathway under exogenous alcohol stress. J Biotechnol. 2018;275:24–30.
  • Serrano JA, Camacho M, Bonete MJ. Operation of glyoxylate cycle in halophilic archaea: presence of malate synthase and isocitrate lyase in Haloferax volcanii. FEBS Lett. 1998;434:13–16.
  • Tang R-R, Chi Z, Jiang H, et al. Overexpression of a pyruvate carboxylase gene enhances extracellular liamocin and intracellular lipid biosynthesis by Aureobasidium melanogenum M39. Process Biochem. 2018;69:64–74.
  • Friedrich T, Dekovic DK, Burschel S. Assembly of the Escherichia coli NADH:ubiquinone oxidoreductase (respiratory complex I). Biochim Biophys Acta - Bioenerg. 2016;1857:214–223.
  • Keohane CE, Steele AD, Fetzer C, et al. Promysalin elicits species-selective inhibition of Pseudomonas aeruginosa by targeting succinate dehydrogenase. J Am Chem Soc. 2018;140:1774–1782.
  • Kleingardner JG, Bren KL. Comparing substrate specificity between cytochrome c maturation and cytochrome c heme lyase systems for cytochrome c biogenesis. Metallomics. 2011;3:396.
  • Shoubridge EA. Cytochrome c oxidase deficiency. Am J Med Genet. 2001;106:46–52.
  • Cai X, Haider K, Lu J, et al. Network analysis of a proposed exit pathway for protons to the P-side of cytochrome c oxidase. Biochim Biophys Acta - Bioenerg. 2018;1859:997–1005.
  • Srivastava AP, Luo M, Zhou W, et al. High-resolution cryo-EM analysis of the yeast ATP synthase in a lipid membrane. Science. 2018;360:aas9699.
  • Zheng J. Energy metabolism of cancer: glycolysis versus oxidative phosphorylation (review). Oncol Lett. 2012;4:1151–1157.
  • Malecki M, Bitton DA, Rodríguez-López M, et al. Functional and regulatory profiling of energy metabolism in fission yeast. Genome Biol. 2016;17:240.
  • Brar SK, Verma M, Barnabé S, et al. Impact of Tween 80 during Bacillus thuringiensis fermentation of wastewater sludges. Process Biochem. 2005;40:2695–2705.
  • Smirnova GV, Oktyabrsky ON. Glutathione in Bacteria. Biochemistry (Moscow). 2005;70:1199–1211.
  • Jones DP. Redefining oxidative stress. Antioxid Redox Signal. 2006;8:1865–1879.
  • Chen W, Chao G, Singh KB. The promoter of a H2O2-inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF- and OBP1-binding sites. Plant J. 1996;10:955–966.
  • Davies K. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life. 2000;50:279–289.
  • Liberek K, Lewandowska A, Zietkiewicz S. Chaperones in control of protein disaggregation. Embo J. 2008;27:328–335.
  • Inoue SI, Kinoshita T. Blue light regulation of stomatal opening and the plasma membrane H+-ATPase. Plant Physiol. 2017;174:531.