9,719
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Advances and potential of gene therapy for type 2 diabetes mellitus

, , , , , & ORCID Icon show all
Pages 1150-1157 | Received 03 Apr 2019, Accepted 11 Jul 2019, Published online: 19 Jul 2019

References

  • American Diabetes Association (ADA). Classification and diagnosis of diabetes. Diabetes Care. 2016;39:S13–S22.
  • International Diabetes Federation (IDF). IDF diabetes atlas. 8th ed. Brussels (Belgium): International Diabetes Federation; 2017.
  • World Health Organization (WHO). Global report on diabetes. Geneva, Switzerland: WHO Press, World Health Organization; 2016. http://www.who.int/diabetes/global-report/en/.
  • Wu Y, Ding Y, Tanaka Y, et al. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci. 2014;11:1185–1200.
  • Hivert MF, Vassy JL, Meigs JB. Susceptibility to type 2 diabetes mellitus-from genes to prevention. Nat Rev Endocrinol. 2014;10:198–205.
  • Palmer SC, Mavridis D, Nicolucci A, et al. Comparison of clinical outcomes and adverse events associated with glucose-lowering drugs in patients with type 2 diabetes: a meta-analysis. JAMA. 2016;316:313–324.
  • Taylor SI, Blau JE, Rother KI. SGLT2 inhibitors may predispose to ketoacidosis. J Clin Endocrinol Metab. 2015;100:2849–2852.
  • DeFronzo R, Fleming GA, Chen K, et al. Metformin-associated lactic acidosis: current perspectives on causes and risk. Metabolism 2016;65:20–29.
  • Holt RIG, Cockram CS, Flyvbjerg A, et al. Textbook of diabetes. 5th ed. In Haurigot V, Jimenez V, and Bosch F, editors. Chapter 70, Gene therapy for diabetes. Hoboken (NJ): John Wiley & Sons, Ltd; 2017. p. 1029–1037.
  • Dunbar CE, High KA, Joung JK, et al. Gene therapy comes of age. Science. 2018;359:eaan4672.
  • Xu R, Li H, Tse LY, et al. Diabetes gene therapy: potential and challenges. Curr Gene Ther. 2003;3:65–82.
  • Wong MS, Hawthorne WJ, Manolios N. Gene therapy in diabetes. Self Nonself. 2010;1:165–175.
  • Kwak SH, Park KS. Recent progress in genetic and epigenetic research on type 2 diabetes. Exp Mol Med. 2016;48:e220.
  • Chellappan DK, Yap WS, Bt Ahmad Suhaimi NA, et al. Current therapies and targets for type 2 diabetes mellitus. Panminerva Med. 2018;60:117–131.
  • Liu L, Nagashima K, Yasuda T, et al. Mutations in KCNJ11 are associated with the development of autosomal dominant, early-onset type 2 diabetes. Diabetologia. 2013;56:2609–2618.
  • Florez JC. Pharmacogenetics in type 2 diabetes: precision medicine or discovery tool?. Diabetologia. 2017;60:800–807.
  • Zhou K, Yee SW, Seiser EL, et al. Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat Genet. 2016;48:1055–1059.
  • Zaharenko L, Kalnina I, Geldnere K, et al. Single nucleotide polymorphisms in the intergenic region between metformin transporter OCT2 and OCT3 coding genes are associated with short-term response to metformin monotherapy in type 2 diabetes mellitus patients. Eur J Endocrinol. 2016;175:531–540.
  • Mofo Mato EP, Guewo-Fokeng M, Essop MF, et al. Genetic polymorphisms of organic cation transporter 1 (OCT1) and responses to metformin therapy in individuals with type 2 diabetes: a systematic review. Medicine (Baltimore). 2018;97:e11349.
  • Ren Q, Han X, Ren J, et al. Influence of the SLCO1B3 gene on sulfonylurea failure in patients with type 2 diabetes in China. Exp Clin Endocrinol Diabetes. 2017;125:449–453.
  • Li Q, Tang TT, Jiang F, et al. Polymorphisms of the KCNQ1 gene are associated with the therapeutic responses of sulfonylureas in Chinese patients with type 2 diabetes. Acta Pharmacol Sin. 2017;38:80–89.
  • Abderrazak A, El Hadri K, Bosc E, et al. Inhibition of the inflammasome NLRP3 by arglabin attenuates inflammation, protects pancreatic β-Cells from apoptosis, and prevents type 2 diabetes mellitus development in apoE2Ki mice on a chronic high-fat diet. J Pharmacol Exp Ther. 2016;357:487–494.
  • Yonamine CY, Pinheiro-Machado E, Michalani ML, et al. Resveratrol improves glycemic control in type 2 diabetic obese mice by regulating glucose transporter expression in skeletal muscle and liver. Molecules. 201722:1180.
  • Norton L, Shannon CE, Fourcaudot M, et al. Sodium-glucose co-transporter (SGLT) and glucose transporter (GLUT) expression in the kidney of type 2 diabetic subjects. Diabetes Obes Metab. 2017;19:1322–1326.
  • Imamura T. Physiological functions and underlying mechanisms of fibroblast growth factor (FGF) family members: recent findings and implications for their pharmacological application. Biol Pharm Bull. 2014;37:1081–1089.
  • Suh JM, Jonker JW, Ahmadian M, et al. Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature. 2014;513:436–439.
  • Scarlett JM, Rojas JM, Matsen ME, et al. Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents. Nat Med. 2016;22:800–806.
  • Marcelin G, Jo YH, Li X, et al. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism. Mol Metab. 2013;3:19–28.
  • Perry RJ, Lee S, Ma L, et al. FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat Commun. 2015;6:6980–6910.
  • Liu JJ, Foo JP, Liu S, et al. The role of fibroblast growth factor 21 in diabetes and its complications: a review from clinical perspective. Diabetes Res Clin Pract. 2015;108:382–389.
  • Strowski MZ. Impact of FGF21 on glycemic control. Horm Mol Biol Clin Investig. 2017;30:1–6.
  • Bae EJ. Sirtuin 6, a possible therapeutic target for type 2 diabetes. Arch Pharm Res. 2017;40:1380–1389.
  • Sociali G, Magnone M, Ravera S, et al. Pharmacological Sirt6 inhibition improves glucose tolerance in a type 2 diabetes mouse model. FASEB J. 2017;31:3138–3149.
  • Cui X, Yao L, Yang X, et al. SIRT6 regulates metabolic homeostasis in skeletal muscle through activation of AMPK. Am J Physiol Endocrinol Metab. 2017;313:E493–E505.
  • Tasyurek MH, Altunbas HA, Canatan H, et al. GLP-1-mediated gene therapy approaches for diabetes treatment. Expert Rev Mol Med. 2014;16:e7–20.
  • Reimann F, Gribble FM. G protein-coupled receptors as new therapeutic targets for type 2 diabetes. Diabetologia. 2016;59:229–233.
  • Riddy DM, Delerive P, Summers RJ, et al. G protein-coupled receptors targeting insulin resistance, obesity, and type 2 diabetes mellitus. Pharmacol Rev. 2018;70:39–67.
  • Oral EA, Reilly SM, Gomez AV, et al. Inhibition of IKKɛ and TBK1 improves glucose control in a subset of patients with type 2 diabetes. Cell Metab. 2017;26:157–170.
  • Zhang Y, Yu XL, Zha J, et al. Therapeutic vaccine against IL-1β improved glucose control in a mouse model of type 2 diabetes. Life Sci. 2018;192:68–74.
  • Liu Y, Gao Z, Guo Q, et al. Anti-diabetic effects of CTB-APSL fusion protein in type 2 diabetic mice. Mar Drugs. 2014;12:1512–1529.
  • Heuer JG, Harlan SM, Yang DD, et al. Role of TGF-alpha in the progression of diabetic kidney disease. Am J Physiol Renal Physiol. 2017;312:F951–F962.
  • Luo B, Li B, Wang W, et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS One. 2014;9:e104771.
  • VinuÉ Á, MartÍnez-HervÁs S, Herrero-Cervera A, et al. Changes in CDKN2A/2B expression associate with T-cell phenotype modulation in atherosclerosis and type 2 diabetes mellitus. Transl Res. 2019;203:31–48.
  • Ma J, Farmer KL, Pan P, et al. Heat shock protein 70 is necessary to improve mitochondrial bioenergetics and reverse diabetic sensory neuropathy following KU-32 therapy. J Pharmacol Exp Ther. 2014;348:281–292.
  • Yuan F, Liu YH, Liu FY, et al. Intraperitoneal administration of the globular adiponectin gene ameliorates diabetic nephropathy in Wistar rats. Mol Med Rep. 2014;9:2293–2300.
  • Zhang Y, Sun X, Icli B, et al. Emerging roles for microRNAs in diabetic microvascular disease: novel targets for therapy. Endocr Rev. 2017;38:145–168.
  • Kuşcu L, Sezer AD. Future prospects for gene delivery systems. Expert Opin Drug Deliv. 2017;14:1205–1215.
  • Cucchiarini M. Human gene therapy: novel approaches to improve the current gene delivery systems. Discov Med. 2016;21:495–506.
  • Nimesh S, Halappanavar S, Kaushik NK, et al. Advances in gene delivery systems. Biomed Res Int. 2015;2015:1–2.
  • Helal NA, Osami A, Helmy A, et al. Non-viral gene delivery systems: hurdles for bench-to-bedside transformation. Pharmazie. 2017;72:627–693.
  • Chiang CJ, Chang CH, Chao YP, et al. Development of a targeted gene-delivery system using Escherichia coli. Methods Mol Biol. 2016;1409:85–93.
  • Xiao X, Guo P, Shiota C, et al. Endogenous reprogramming of alpha cells into beta cells, induced by viral gene therapy, reverses autoimmune diabetes. Cell Stem Cell. 2018;22:78–90.
  • Kovacsics D, Raper J. Transient expression of proteins by hydrodynamic gene delivery in mice. J Vis Exp. 2014;87:e51481.
  • Dorraj G, Carreras JJ, Nunez H, et al. Lipid Nanoparticles as potential gene therapeutic delivery systems for oral administration. Curr Gene Ther. 2017; 17:89–104.
  • Garcia-Guerra A, Dunwell TL, Trigueros S. Nano-scale gene delivery systems: current technology, obstacles, and future directions. CMC. 2018;25:2448–2464.
  • Cummins J, Cronin M, van Pijkeren JP, et al. Bacterial systems for gene delivery to systemic tumors. Methods Mol Biol. 2014;1141:201–209.
  • Tu P, Ma Z, Wang H, et al. Expression of CTB-10 × rolGLP-1 in E. coli and its therapeutic effect on type 2 diabetes. Curr Pharm Biotechnol. 2015;16:564–572.
  • Kong Y, Tong Y, Gao M, et al. Linker engineering for fusion protein construction: improvement and characterization of a GLP-1 fusion protein. Enzyme Microb Technol. 2016;82:105–109.
  • Xu F, Wang KY, Wang N, et al. Modified human glucagon-like peptide-1 (GLP-1) produced in E. coli has a long-acting therapeutic effect in type 2 diabetic mice. PLoS One. 2017;12:e0181939.
  • Agarwal P, Khatri P, Billack B, et al. Oral delivery of glucagon like peptide-1 by a recombinant Lactococcus lactis. Pharm Res. 2014;31:3404–3414.
  • Lin Y, Krogh-Andersen K, Pelletier J, et al. Oral delivery of pentameric glucagon-like peptide-1by recombinant Lactobacillus in diabetic rats. PLoS One. 2016;11:e0162733.
  • Wu R, Chao M, Li X, et al. Construction of yeast strains expressing long-acting glucagon-like peptide-1(GLP-1) and their therapeutic effects on type 2 diabetes mellitus mouse model. Hereditas. 2015;37:183–191.
  • Tasyurek HM, Altunbas HA, Balci MK, et al. Therapeutic potential of lentivirus-mediated glucagon-like peptide-1 gene therapy for diabetes. Hum Gene Ther. 2018;29:802–815.
  • Wang J, Wen J, Bai D, et al. Injection of submandibular gland with recombinant exendin-4 and adeno-associated virus for the treatment of diabetic rats. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2015;40:1179–1185.
  • Nurunnabi M, Lee SA, Revuri V, et al. Oral delivery of a therapeutic gene encoding glucagon-like peptide 1 to treat high fat diet-induced diabetes. J Control Release. 2017;268:305–313.
  • Lu G, Teng X, Zheng Z, et al. Overexpression of a glucokinase point mutant in the treatment of diabetes mellitus. Gene Ther. 2016;23:323–329.
  • Tasyurek HM, Eksi YE, Sanlioglu AD, et al. HIV-based lentivirus-mediated vasoactive intestinal peptide gene delivery protects against DIO animal model of type 2 diabetes. Gene Ther. 2018;25:269–283.
  • Chen J, Chen S, Huang P, et al. In vivo targeted delivery of ANGPTL8 gene for beta cell regeneration in rats. Diabetologia. 2015;58:1036–1044.
  • Jimenez V, Jambrina C, Casana E, et al. FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Mol Med. 2018;10:e8791.
  • Chang X, Hou Y. Expression of RecA and cell-penetrating peptide (CPP) fusion protein in bacteria and in mammalian cells. Int J Biochem Mol Biol. 2018;9:1–10.
  • Ishikawa T, Somiya K, Munechika R, et al. Mitochondrial transgene expression via an artificial mitochondrial DNA vector in cells from a patient with a mitochondrial disease. J Control Release. 2018; 274:109–117.
  • Cano-Garrido O, Seras-Franzoso J, Garcia-Fruitós E. Lactic acid bacteria: reviewing the potential of a promising delivery live vector for biomedical purposes. Microb Cell Fact. 2015;14:137.
  • Mao R, Wu D, Hu S, et al. Secretory expression and surface display of a new and biologically active single-chain insulin (SCI-59) analog by lactic acid bacteria. Appl Microbiol Biotechnol. 2017;101:3259–3271.
  • Sun Z, Sun X, Li J, et al. Using probiotics for type 2 diabetes mellitus intervention: advances, questions, and potential. Crit Rev Food Sci Nutr. 2019:1–14. doi:10.1080/10408398.2018.1547268.
  • Simon MC, Strassburger K, Nowotny B, et al. Intake of Lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: a proof of concept. Diabetes Care. 2015;38:1827–1834.