1,361
Views
2
CrossRef citations to date
0
Altmetric
Articles

Functional GUS assay of GRAS transcription factor from Medicago truncatula

, , &
Pages 1187-1194 | Received 02 Jun 2019, Accepted 24 Jul 2019, Published online: 12 Aug 2019

References

  • Graham PH, Vance CP. Legumes: importance and constraints to greater use. Plant Physiol. 2003;131:872–877.
  • Varshney RK, Close TJ, Singh NK, et al. Orphan legume crops enter the genomics era! Curr Opin Plant Biol. 2009;12:202–210.
  • Xiao TT, Schilderink S, Moling S, et al. Fate map of Medicago truncatula root nodules. Development 2014;141:3517–3528.
  • Sun X, Jones WT, Rikkerink EH. GRAS proteins: the versatile roles of intrinsically disordered proteins in plant signaling. Biochem J. 2012;442:1–12.
  • Huang W, Xian Z, Xia K, et al. Genome-wide identification, phylogeny and expression analysis of GRAS gene family in tomato. BMC Plant Biol. 2015;15:209–226.
  • Hirsch S, Oldroyd GE. GRAS-domain transcription factors that regulate plant development. Plant Signal Behav. 2009;4:698–700.
  • Song L, Tao L, Cui H, et al. Genome-wide identification and expression analysis of the GRAS family proteins in Medicago truncatula. Acta Physiol Plant. 2017;39:93. [cited 2019 Jun 02]
  • Ho-Plágaro T, Molinero-Rosales N, Flores DF, et al. Identification and expression analysis of GRAS transcription factor genes involved in the control of arbuscular mycorrhizal development in tomato. Frontiers in Plant Sci. 2019;10:268.
  • Sun X, Xue B, Jones WT, et al. A functionally required unfoldome from the plant kingdom: intrinsically disordered N-terminal domains of GRAS proteins are involved in molecular recognition during plant development. Plant Mol Biol. 2011;77:205–223.
  • Bolle C. The role of GRAS proteins in plant signal transduction and development. Planta 2004;218:683–692.
  • Lu J, Wang T, Xu Z, et al. Genome-wide analysis of the GRAS gene family in Prunus mume. Mol Genet Genomics. 2015;290:303–317.
  • Li M, Sun B, Xie F, et al. Identification of the GRAS gene family in the Brassica juncea genome provides insight into its role in stem swelling in stem mustard. Peer J. 2019;7:e6682.
  • Hirsch S, Kim J, Munoz A, et al. GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula. Plant Cell. 2009;21:545–557.
  • Kaló P, Gleason C, Edwards A, et al. Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science 2005;308:1786–1789.
  • Ma H-S, Liang D, Shuai P, et al. The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. J Exp Bot. 2010;61:4011–4019.
  • Mayrose M, Ekengren SK, Melech-Bonfil S, et al. A novel link between tomato GRAS genes, plant disease resistance and mechanical stress response. Mol Plant Pathol. 2006;7:593–604.
  • Iantcheva A, Vassileva V, Ugrinova M, et al. Development of functional genomic platform for model legume Medicago truncatula in Bulgaria. Biotechnol Biotechnol Eq. 2009;23:1440–1443.
  • Iantcheva A, Chabaud M, Cosson V, et al. Osmotic shock improves Tnt1 transposition frequency in Medicago truncatula cv Jemalong during in vitro regeneration. Plant Cell Rep. 2009;28:1563–1572.
  • Karimi M, Inze D, Depicker A. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 2002;7:193–195.
  • Iantcheva A, Revalska M, Zehirov G, et al. Agrobacterium-mediated transformation of Medicago truncatula cell suspension culture provides a system for functional analysis. In Vitro Cell Dev Biol-Plant. 2014;50:149–157.
  • Nolan KE, Rose RJ, Jr G. Regeneration of Medicago truncatula from tissue culture: increased somatic embryogenesis using explants from regenerated plants. Plant Cell Rep. 1989;8:278–281.
  • Revalska M, Vassileva V, Zechirov G, et al. Is the auxin influx carrier LAX3 essential for plant growth and development in the model plants Medicago truncatula, Lotus japonicus and Arabidopsis thaliana? Biotechnol Biotechnol Equip. 2015;29:786–797.
  • Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15:473–497.
  • Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987;6:3901–3907.
  • Willemsen V, Wolkenfelt H, de Vrieze G, et al. The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo. Development 1998;125:521–531.
  • Smit P, Raedts J, Portyanko V, et al. NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription. Science 2005;308:1789–1791.
  • Middleton PH, Jakab J, Penmetsa RV, et al. An ERF transcription factor in Medicago truncatula that is essential for Nod factor signal transduction. Plant Cell. 2007;19:1221–1234.
  • Young ND, Udvardi M. Translating Medicago truncatula genomics to crop legumes. Curr Opin Plant Biol. 2009;12:193–201.
  • Revalska M, Vassileva V, Goormachtig S, et al. Recent progress in development of a Tnt1 functional genomics platform for the model legumes Medicago truncatula and Lotus japonicus in Bulgaria. Curr Genomics. 2011;12:147–152.
  • Iantcheva A, Revalska M, Zehirov G, et al. Tnt1 retrotransposon as an efficient tool for development of an insertional mutant collection of Lotus japonicus. In Vitro Cell Dev Biol-Plant. 2016;52:338–347.