1,337
Views
7
CrossRef citations to date
0
Altmetric
Articles

Characterization and novel Est-SSR marker development of an important Chinese medicinal plant, Morinda officinalis How (Rubiaceae)

ORCID Icon, , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1311-1318 | Received 26 Mar 2019, Accepted 28 Aug 2019, Published online: 23 Sep 2019

References

  • How FC. Description of a Chinese medical plant “Pa Chit T’ien”. J Univ Chin Acad Sci. 1958;7:325–328.
  • Chen T, Luo XR, Zhu H, et al. 2003. Rubiaceae, Wu ZY, Raven PH, Hong DY, editors. Flora of China. Beijing, China: Science Press; St. Louis, MO: Missouri Botanical Garden Press; Vol. 19, pp. 220–230.
  • Wu ZQ, Chen DL, Lin FH, et al. Effect of bajijiasu isolated from Morinda officinalis F. C. how on sexual function in male mice and its antioxidant protection of human sperm. J Ethnopharmacol. 2015;164:283–292.
  • Zhang JH, Xin HL, Xu YM, et al. Morinda officinalis How. A comprehensive review of traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 2018;213:230–255.
  • Yong JP, Lu CZ, Huang SJ, et al. Chemical components isolated from the roots of Morinda officinalis. Chem Nat Compd. 2015;51(3):548–549.
  • Yang F, Su YF, Zhao ZQ, et al. Anthraquinones and iridoids from Morinda officinalis. Chem Nat Compd. 2016;52(6):989–991.
  • Zhao XS, Wei JH, Yang MH. Simultaneous analysis of iridoid glycosides and anthraquinones in Morinda officinalis using UPLC-QqQ-MS/MS and UPLC-Q/TOF-MSE. Molecules. 2018;23(5):E1070.
  • Zhang RJ, Li Q, Qu M, et al. Investigation on germplasm resources of Morinda officinalis How. Mod Chin Med. 2016;18(4):482–487.
  • The Ministry of Agriculture and the State Administration of Forestry. National key protected wild plants (first batch). Beijing, China: The State Council of the People’s Republic of China; 1999.
  • He CB, Li L, Tang FX, et al. Isolation and structure characterization of polysaccharide from Morinda officinalis How. Chem J Chin Univ. 2009;30:2391–2395.
  • Zhu MY, Wang CJ, Gu Y, et al. Extraction, characterization of polysaccharides from Morinda officinalis and its antioxidant activities. Carbohydr Polym. 2009;78:497–501.
  • Zhou B, Chang J, Wang P, et al. Qualitative and quantitative analysis of seven oligosaccharides in Morinda officinalis using double-development HPTLC and scanning densitometry. Biomed Mater Eng. 2014;24(1):953–960.
  • Ding P, Liu J, Yang TC, et al. Genetic diversity of Morinda officinalis by RAPD. Chin Trad Herb Drug. 2008;39:1869–1872.
  • Ding P, Liu J, Qiu JY, et al. Genuineness of Morinda officinalis How germplasm inferred from ITS sequences variation of nuclear ribosomal DNA. Yao Xue Xue Bao. 2012;47(4):535–540.
  • Xu Z, Ran Z, Yang X, et al. Cluster analysis of Morinda officinalis How in different geographical populations based on psbA-trnH and rDNA ITS sequences. J Southern Agri. 2018;49(12):2364–2370.
  • Zhang RJ, Li Q, Gao JL, et al. The complete chloroplast genome sequence of the medicinal plant Morinda officinalis (Rubiaceae), an endemic to China. Mitochondr DNA A. 2016;27(6):4324–4325.
  • Doyle JJ, Doyle JL. A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull. 1987;19:11–15.
  • Patel RK, Jain M. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One. 2012;7(2):e30619.
  • Haas BJ, Papanicolaou A, Yassour M, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–1512.
  • Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60.
  • Ye J, Zhang Y, Cui HH, et al. WEGO 2.0: a web tool for analyzing and plotting GO annotations, 2018 update. Nucleic Acids Res. 2018;46(W1):W71–W75.
  • Untergasser A, Cutcutache I, Koressaar T, et al. Primer3-new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115.
  • Rousset F. GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour. 2008;8(1):103–106. 01931.x.
  • Van Oosterhout C, Hutchinson WF, Wills DPM, et al. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 2004;4(3):535–538.
  • Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics. 2012;28(19):2537–2539.
  • Liu YJ, Huang Y, Rong JD, et al. Genetic diversity analysis of Morinda officinalis by ISSR markers. J Fujian Coll Forestry. 2011;31(3):203–206.
  • Singh DR, Srivastava AK, Srivastava A, et al. Genetic diversity among three Morinda species using RAPD and ISSR markers. Ind J Biotechnol. 2011;10(3):285–293. http://hdl.handle.net/123456789/12110.
  • Ding P, Chu TL, Xu JY. The chromatographic fingerprint of component of Morinda officinalis in different germplasms. West China J Phama Sci. 2006;21(1):12–14.
  • Singh AK, Chaurasia S, Kumar S, et al. Identification, analysis and development of salt responsive candidate gene based SSR markers in wheat. BMC Plant Biol. 2018;18(1):249.
  • Mondego JM, Vidal RO, Carazzolle MF, et al; Brazilian Coffee Genome Project Consortium. An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora. BMC Plant Biol. 2011;11(1):30.
  • Poncet V, Rondeau M, Tranchant C, et al. SSR mining in coffee tree EST databases: potential use of EST-SSRs as markers for the Coffea genus. Mol Genet Genomics. 2006;276(5):436–449.
  • Deng SY, Wang XR, Zhu PL, et al. Development of polymorphic microsatellite markers in the medicinal plant Gardenia jasminoides (Rubiaceae). Biochem Syst Ecol. 2015;58:149–155.
  • Han ZZ, Ma XY, Wei M, et al. SSR marker development and intraspecific genetic divergence exploration of Chrysanthemum indicum based on transcriptome analysis. BMC Genomics. 2018;19(1):e291.
  • Zhang HY, Miao HM, Wei LB, et al. Identification of a SiCL1 gene controlling leaf curling and capsule indehiscence in sesame via cross-population association mapping and genomic variants screening. BMC Plant Biol. 2018;18(1):e296.
  • Jiang KM, Huang D, Zhang DW, et al. Investigation of inulins from the roots of Morinda officinalis for potential therapeutic application as anti-osteoporosis agent. Int J Biol Macromol. 2018;120:170–179. 08.082.
  • Zhao M, Xu WF, Shen HY, et al. Comparison of bioactive components and pharmacological activities of Ophiopogon japonicas extracts from different geographical origins. J Pharm Biomed Anal. 2017;138:134–141.