850
Views
2
CrossRef citations to date
0
Altmetric
Articles

Efficient agrobacterium-mediated transformation of Shiraia bambusicola and activation of a specific transcription factor for hypocrellin production

, &
Pages 1365-1371 | Received 17 Apr 2019, Accepted 10 Sep 2019, Published online: 24 Sep 2019

References

  • Fang LZ, Qing C, Shao HJ, et al. Hypocrellin D, a cytotoxic fungal pigment from fruiting bodies of the ascomycete Shiraia bambusicola. J Antibiot. 2006;59(6):351–354.
  • Kishi T, Tahara S, Taniguchi N, et al. New perylenequinones from Shiraia bambusicola. Planta Med. 1991;57(4):376–379.
  • Deininger MH, Weinschenk T, Morgalla MH, et al. Release of regulators of angiogenesis following Hypocrellin-A and -B photodynamic therapy of human brain tumor cells. Biochem Biophys Res Commun. 2002;298(4):520–530.
  • Ma G, Khan SI, Jacob MR, et al. Antimicrobial and antileishmanial activities of hypocrellins A and B. Antimicrob Agents Ch. 2004;48(11):4450–4452.
  • Su Y, Sun J, Rao S, et al. Photodynamic antimicrobial activity of hypocrellin A. J Photochem Photobiol B, Biol. 2011;103(1):29–34.
  • Zhang S, Qiu D, Liu J, et al. Active components of fungus Shiraia bambusiscola can specifically induce BGC823 gastric cancer cell apoptosis. Cell J. 2016;18(2):149–158.
  • Deng HX, Gao RJ, Chen JJ, et al. An efficient polyethylene glycol-mediated transformation system of lentiviral vector inShiraia bambusicola. Process Biochem. 2016;51(10):1357–1362.
  • Combier JP, Melayah D, Raffier C, et al. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. Fems Microbiol Lett. 2003;220(1):141–148.
  • Pardo AG, Kemppainen M, Valdemoros D, et al. T-DNA transfer from Agrobacterium tumefaciens to the ectomycorrhizal fungus Pisolithus microcarpus. Rev Argent Microbiol. 2005;37(2):69–72.
  • Sharma KK, Gupta S, Kuhad RC. Agrobacterium-mediated delivery of marker genes to Phanerochaete chrysosporium mycelial pellets: a model transformation system for white-rot fungi. Biotechnol Appl Biochem. 2016;43(3):181–186.
  • Pengjie H, Ying W, Jun Z, et al. AcstuA, which encodes an APSES transcription regulator, is involved in conidiation, cephalosporin biosynthesis and cell wall integrity of Acremonium chrysogenum. Fungal Genet Biol. 2015;83:26–40.
  • Alazi E, Knetsch T, Di Falco M, et al. Inducer-independent production of pectinases in Aspergillus niger by overexpression of the D-galacturonic acid-responsive transcription factor gaaR. Appl Microbiol Biotechnol. 2018;102(6):2723–2736.
  • Zhao N, Lin X, Qi SS, et al. De Novo Transcriptome assembly in Shiraia bambusicola to investigate putative genes involved in the biosynthesis of Hypocrellin A. IJMS. 2016;17(3):311–325.
  • Zhang A, Lu P, Dahl-Roshak AM, et al. Efficient disruption of a polyketide synthase gene (pks1) required for melanin synthesis through Agrobacterium-mediated transformation of Glarealozoyeasis. Mol Genet Genomics. 2003;268(5):645–655.
  • Sørensen LQ, Lysøe E, Larsen JE, et al. Genetic transformation of Fusarium avenaceum by Agrobacterium tumefaciens mediated transformation and the development of a USER-Brick vector construction system. Bmc Mol Biol. (1) 2014;15:15–30.
  • Zhang C, Li T, Hou CL, et al. Selection of reference genes from Shiraia bambusicola for RT-qPCR analysis under different culturing conditions. AMB Expr. 2017;7(1):14.
  • Shen XY, Hu YJ, Song L, et al. Improvement of hypocrellin production by a new fungal source and optimization of cultivation conditions. Biotechnol Biotec. 2016;30(4):819–826.
  • Deng H, Gao R, Liao X, et al. Genome editing in Shiraia bambusicola using CRISPR-Cas9 system. J Biotechnol. 2017;259:228–234.
  • Li D, Zhao N, Guo BJ, et al. Gentic overexpression increases production of hypocrellin A in Shiraia bambusicola S4201. J Microbiol. 2019;57(2):154–162.
  • Gao R, Deng H, Guan Z, et al. Enhanced hypocrellin production via coexpression of alpha-amylase and hemoglobin genes in Shiraia bambusicola. AMB Expr. 2018;8(1):71.
  • Gao R, Xu Z, Deng H, et al. Enhanced hypocrellin production of Shiraia sp. SUPER-H168 by overexpression of alpha-amylase gene. PLoS One. 2018;13(5):e0196519. [cited 2019 Aug 18]; [22 p.].
  • Keller NP. Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol. 2019;17(3):167–180.
  • Hoffmeister D, Keller NP. Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep. 2007;24(2):393–416.
  • Newman AG, Townsend CA. Molecular characterization of the cercosporin biosynthetic pathway in the fungal plant pathogen Cercospora nicotianae. J Am Chem Soc. 2016;138(12):4219–4228.
  • Yang SL, Chung KR. Transcriptional regulation of Elsinochrome phytotoxin biosynthesis by an EfSTE12 activator in the citrus scab pathogen Elsinoe fawcettii. Fungal Biol. 2010;114(1):64–73.
  • Tong Z, Mao L, Liang H, et al. Simultaneous determination of six perylenequinones in Shiraiaia sp.Slf14 by HPLC. J Liq Chromatogr R T. 2017;40(10):536–540.
  • Cai Y, Liao X, Liang X, et al. Induction of hypocrellin production by Triton X-100 under submerged fermentation with Shiraia sp. SUPER-H168. N Biotechnol. 2011;28(6):588–592.
  • Lei XY, Zhang MY, Ma YJ, et al. Transcriptomic responses involved in enhanced production of hypocrellin A by addition of Triton X-100 in submerged cultures of Shiraia bambusicola. J Ind Microbiol Biotechnol. 2017;44(10):1415–1429.
  • Liu B, Bao J, Zhang Z, et al. Enhanced production of perylenequinones in the endophytic fungus Shiraia sp. Slf14 by calcium/calmodulin signal transduction. Appl Microbiol Biotechnol. 2018;102(1):153–163.
  • Ma YJ, Lu CS, Wang JW. Effects of 5-Azacytidine on growth and hypocrellin production of Shiraia bambusicola. Front Microbiol. 2018;9:2508. [cited 2019 Aug 18]; [14 p.]
  • Gao R, Xu Z, Deng H, et al. Influences of light on growth, reproduction and hypocrellin production by Shiraia sp. SUPER-H168. Arch Microbiol. 2018;200(8):1217–1225.
  • Ma YJ, Sun CX, Wang JW. Enhanced production of Hypocrellin A in submerged cultures of Shiraia bambusicola by red light. Photochem Photobiol. 2018;95(3):100–107.
  • Sun CX, Ma YJ, Wang JW. Improved hypocrellin A production in Shiraia bambusicola by light-dark shift. J Photochem Photobiol B. 2018;182:100–107.