844
Views
5
CrossRef citations to date
0
Altmetric
Articles

Molecular characterization and function analysis of the rice OsDUF1191 family

, , , , , , , , , , , , , ORCID Icon & show all
Pages 1608-1615 | Received 16 Aug 2019, Accepted 22 Oct 2019, Published online: 04 Nov 2019

References

  • Bateman A, Coggill P, Finn RD. DUFs: families in search of function. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010;66(10):1148–1152.
  • Mudgal R, Sandhya S, Chandra N, et al. De-DUFing the DUFs: Deciphering distant evolutionary relationships of Domains of Unknown Function using sensitive homology detection methods. Biol Direct. 2015;10(1):38.
  • Goodacre NF, Gerloff DL, Uetz P. Protein domains of unknown function are essential in bacteria. MBio [Internet]. 2014;5:e00744–00713. Available from: http://mbio.asm.org/content/5/1/e00744-13.full.
  • Finn RD, Coggill P, Eberhardt RY, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44(D1):D279–285.
  • He X, Hou X, Shen Y, et al. TaSRG, a wheat transcription factor, significantly affects salt tolerance in transgenic rice and Arabidopsis. FEBS Lett. 2011;585(8):1231–1237.
  • Kim SJ, Ryu MY, Kim WT. Suppression of Arabidopsis RING-DUF1117 E3 ubiquitin ligases, AtRDUF1 and AtRDUF2,reduces tolerance to ABA-mediated drought stress. Bio-chem Biophys Res Commun. 2012;420(1):141–147.
  • Luo C, Guo C, Wang W, et al. Overexpression of a new stress-repressive gene OsDSR2 encoding a protein with a DUF966 domain increases salt and simulated drought stress sensitivities and reduces ABA sensitivity in rice. Plant Cell Rep. 2014;33(2):323–336.
  • Wang L, Shen R, Chen LT, et al. Characterization of a novel DUF1618 gene family in rice. J Integr Plant Biol. 2014;56(2):151–158.
  • Guo C, Luo C, Guo L, et al. OsSIDP366, a DUF1644 gene, positively regulates responses to drought and salt stresses in rice. J Integr Plant Biol. 2016;58(5):492–502.
  • Boyer JS. Plant productivity and environment. Science. 1982;218(4571):443–448.
  • Mittler R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006;11(1):15–19.
  • Wang W, Vinocur B, Altman A. Plant responses to drought,salinity and extreme temperatures: towards genetic engieering for stress tolerance. Planta. 2003;218(1):1–14.
  • Herms DA, Mattson WJ. The dilemma of plants: to grow ordefend. Q Rev Biol. 1992;67(3):283–335.
  • Soltis DE, Soltis PS. The role of phylogenetics in comparative genetics. Plant Physiol. 2003;132(4):1790–1800.
  • Xiang Y, Tang N, Du H, et al. Characterization of OsbZIP23as a key player of the basic leucine zipper transcription factor fmaily or conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol. 2008;148(4):1938–1952.
  • Sato H, Todaka D, Kudo M, et al. The Arabidopsis transcriptional regulator DPB3-1 enhances heat stress tolerance without growth retardation in rice. Plant Biotechnol J. 2016;14(8):1756–1767.
  • Liu J, Zhang C, Wei C, et al. The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice. Plant Physiol. 2016;170(1):429–443.
  • Hong Y, Zhang H, Huang L, et al. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci [Internet]. 2016. [cited 2016 Jul2];7:4. Available from: http://journal.frontiersin.org/article/10.3389/fpls.2016.00004/full.
  • Yoon DH, Lee SS, Park HJ, et al. Overexpression of OsCYP19-4 increases tolerance to cold stress and enhances grain yield in rice (Oryza sativa). J. Exp. BOT. 2016;67(1):69–82.
  • Min HJ, Jung YJ, Kang BG, et al. CaPUB1, a hot pepper U- box E3 ubiquitin ligase, confers enhanced cold stress tolerance and decreased drought stress tolerance in trans-genic rice (Oryza sativa L.). Mol Cells 2016;39:250–257.
  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stressm responses. Curr Opin Plant Biol. 2003;6(5):410–417. 5:5857–5864.
  • Letunic I, Doerks T, Bork P. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 2014;43:257–260.
  • Emanuelsson O, Brunak S, von Heijne G, et al. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc. 2007;2(4):953–971.
  • Bailey TL, Boden M, Buske FA, et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37:202–208.
  • Tamura K, Dudley J, Nei M, et al. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24(8):1596–1599.
  • Li L, Liu C, Lian X. Gene expression profiles in rice roots under low phosphorus stress. Plant Mol Biol. 2010;72(4-5):423–432.
  • Li L, Xie C, Ye T, et al. Molecular characterization, expression pattern, and function analysis of the rice OsDUF866 family. Biotechnol Biotechnol Equip. 2017;31(2):243–249.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-DDC(T)) method. Methods 2001;25(4):402–408.
  • Li L, Ye T, Xu J, et al. Molecular characterization and function analysis of the rice OsDUF946 family. Biotechnol Biotechnol Equip. 2017;31(3):477–485.
  • Liang Y, Chen Q, Liu Q, et al. Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol. 2003;160(10):1157–1164.
  • Wang X, Shi X, Hao B, et al. Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol. 2005;165(3):937–946.
  • Li L, Ye T, Guan Y, et al. Genome-wide identification and analyses of the rice OsDUF936 family. Biotechnol Biotechnol Equip. 2018;32(2):309–315.
  • Li L, Lv M, Zhao L, et al. Molecular characterization and function analysis of the rice OsDUF829 family. Biotechnol Biotechnol Equip. 2018;32(3):550–557.
  • Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress. Physiol Plant. 2008;133(3):481–489.