1,277
Views
15
CrossRef citations to date
0
Altmetric
Articles

Assessment of genetic diversity in Triticum urartu Thumanjan ex Gandilyan accessions using start codon targeted polymorphism (SCoT) and CAAT-box derived polymorphism (CBDP) markers

, , , &
Pages 1653-1662 | Received 04 Jun 2019, Accepted 07 Nov 2019, Published online: 18 Nov 2019

References

  • Kilian B, Ozkan H, Deusch O, et al. Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol. 2007;24(1):217–227.
  • Valkoun J, Waines JG, Konopka J. The origins of agriculture and crop domestication. In: Damania AB, Valkoun J, Willcox G, Qualset CO, editors. Proceedings of the Harlan symposium. Aleppo, Syria: ICARDA,1997.
  • Tabatabaei SF, Maassoumi TR. Triticum boeoticum ssp. thaoudar “exists” in Iran. Cereal Res Commun. 2001;29:121–126.
  • Megyeri M, Mikó P, Molnár I, et al. Development of synthetic amphiploids based on Triticum turgidum × T. monococcum crosses to improve the adaptability of cereal. Acta Agron Hungarica. 2011;59(3):267–274.
  • Chunyan W, Maosong L, Jiqing S, et al. Differences in stomatal and photosynthetic characteristics of five diploid wheat species. Acta Ecol Sin. 2008;28(7):3277–3283.
  • Yesayan AH, Grigorin KV, Danielian AM, et al. Determination of salt tolerance in wild wheat (Triticum boeoticum Boiss.) under in vitro conditions. CWR. 2009;7:4–6.
  • Ahmadi J, Pour-Aboughadareh A. Allelic variation of glutenin and gliadin genes in Iranian einkorn wheat. J Biodiversity Environ Sci. 2015;7:168–179.
  • Ahamdi J, Pour-Aboughadareh A, Fabriki-Ourang S, et al. Molecular detection of glutenin and gliadin genes in the domesticated and wild relatives of wheat using allele-specific markers. Cereal Res Commun. 2018;46:510–520.
  • Tiwari G, Singh R, Singh N, et al. Study of arbitrarily amplified (RAPD and ISSR) and gene targeted (SCoT and CBDP) markers for genetic diversity and population structure in Kalmegh [Andrographis paniculata (Burm.f.) Nees]. Ind Crops Prod. 2016;86:1–11.
  • Pour-Aboughadareh A, Ahmadi J, Mehrabi AA, et al. Physiological responses to desiccation stress in wild relatives of wheat: implications for wheat improvement. Acta Physiol Plant. 2017;39(4):106. [cited 2019 Sep 11].
  • Ahmadi J, Pour-Aboughadareh A, Fabriki-Ourang S, et al. Screening wild progenitors of wheat for salinity stress at early stages of plant growth: insight into potential sources of variability for salinity adaptation in wheat. Crop Pasture Sci. 2018;69(7):649–658.
  • Ahmadi J, Pour-Aboughadareh A, Ourang SF, et al. Wild relatives of wheat: Aegilops–Triticum accessions disclose differential antioxidative and physiological responses to water stress. Acta Physiol Plant. 2018;40(5):90. [cited 2019 Sep 11].
  • Collard BC, Mackill DJ. Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep. 2009;363:557–572.
  • Singh AK, Rana MK, Singh S, et al. CAAT box-derived polymorphism (CBDP): a novel promoter-targeted molecular marker for plants. J Plant Biochem Biotechnol. 2014;23(2):175–183.
  • Feng S, He R, Yang S, et al. Start codon targeted (SCoT) and target region amplification polymorphism (TRAP) for evaluating the genetic relationship of Dendrobium species. Gene. 2015;567(2):182–188.
  • Etminan A, Pour-Aboughadareh A, Mohammadi R, et al. Applicability of start codon targeted (SCoT) and inter-simple sequence repeat (ISSR) markers for genetic diversity analysis in durum wheat genotypes. Biotechnol Biotechnol Equip. 2016;30(6):1075–1081.
  • Etminan A, Pour-Aboughadareh A, Noori A, et al. Genetic relationships and diversity among wild Salvia accessions revealed by ISSR and SCoT markers. Biotechnol Biotechnol Equip. 2018;32(3):610–617.
  • Etminan A, Pour-Aboughadareh A, Mehrabi AA, et al. Molecular characterization of the wild relatives of wheat using CAAT-box derived polymorphism. Plant Biosyst. 2019;153(3):398–405.
  • Qaderi A, Omidi M, Pour-Aboghadareh A, et al. Molecular diversity and phytochemical variability in the Iranian poppy (Papaver bracteatum Lindl.): a baseline for conservation and utilization in future breeding programmes. Ind Crops Prod. 2019;130:237–247.
  • Pour-Aboughadareh A, Ahmadi J, Mehrabi AA, et al. Insight into the genetic variability analysis and relationships among some Aegilops and Triticum species, as genome progenitors of bread wheat, using SCoT markers. Plant Biosyst. 2018;152(4):694–703.
  • Moradkhani H, Mehrabi AA, Etminan A, et al. Molecular diversity and phylogeny of Triticum–Aegilops species possessing D genome revealed by SSR and ISSR markers. Plant Breed Seed Sci. 2015;71:82–95.
  • Salimi A, Ebrahimzadeh H, Taeb M. Description of Iranian diploid wheat resources. Genet Resour Crop Evol. 2005;52(4):351–361.
  • Moghaddam M, Ehdaie B, Waines JG. Genetic diversity in population of wild diploid wheat Triticum urartu Tum.ex. Gandil. revealed by isozyme markers. Genet Resour Crop Evol. 2000;47(3):323–334.
  • Nasernakhaei F, Rahiminejad MR, Saeidi H, et al. Taxonomic identity of the Iranian diploid Triticum as evidenced by nrDNA ITS analysis. Phytotaxa. 2013;143(1):43–53.
  • Mousavifard SS, Saeidi H, Rahiminejad MR, et al. Molecular analysis of diversity of diploid Triticum species in Iran using ISSR markers. Genet Resour Crop Evol. 2015;62(3):387–394.
  • Ghahremani-Majd H, Dashti F. Genetic diversity of Persian shallot (Allium hirtifolium Boiss.) populations based on morphological traits and RAPD markers. Plant Syst Evol. 2014;300(5):1021–1030.
  • Pour-Aboughadareh A, Mohmoudi M, Ahmadi J, et al. Agro-morphological and molecular variability in Triticum boeoticum accessions from Zagros Mountains, Iran. Genet Resour Crop Evol. 2017;64(3):545–556.
  • Zamanianfard Z, Etminan A, Mohammadi R, et al. Evaluation of molecular diversity of durum wheat genotypes using ISSR markers. Biol Forum. 2015;7:214–218.
  • Moradkhani H, Pour-Aboughadareh A, Mehrabi AA, et al. Evaluation of genetic relationships of Triticum-Aegilops species possessing D genome in different ploidy levels using microsatellites. In J Agric Crop Sci. 2012;23:1746–1752.
  • Doyle JJ, Doyle JK. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987;19:11–15.
  • Peakall R, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006;6(1):288–295.
  • Jaccard P. Nouvelles recherches sur la distribution florale. Bulletin de la Societe Vaudoise [New research on the floral distribution]. Sci Nat. 1908;44:223–270.
  • Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–2739.
  • Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–959.
  • Earl DA, vonHoldt BM. Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. 2012;4(2):359–361.
  • Heikrujam M, Kumar J, Agrawal V. Genetic diversity analysis among male and female Jojoba genotypes employing gene targeted molecular markers, start codon targeted (SCoT) polymorphism and CAAT box-derived polymorphism (CBDP) markers. Meta Gene. 2015;5:90–97.
  • Etminan A, Pour-Aboughadareh A, Mohammadi R, et al. Application of CAAT box-derived polymorphism (CBDP) markers for analysis of genetic diversity in durum wheat. Cereal Res Commun. 2018;46(1):1–9.
  • Ni J-L, Zhu A-G, Wang X-F, et al. Genetic diversity and population structure of ramie (Boehmeria nivea L.). Ind Crops Prod. 2018;115:340–347.
  • Naghavi MR, Maleki M, Aizadeh H, et al. An assessment of genetic diversity in wild diploid wheat Triticum boeoticum from west of Iran using RAPD, AFLP and SSR markers. J Agric Sci Technol. 2009;11:585–598.
  • Wright S. The genetical structure of populations. Ann Eugen. 1949;15(1):323–354.
  • Dumolin-Lapegue S, Demesure B, Fineschi S, et al. Phylogeographic structure of white oaks throughout the European continent. Genetics. 1997;146(4):1475–1487.
  • Abbasov M. Genetic diversity in wild diploid wheat T. urartu revealed by SSR markers. Cereal Res Commun. 2018;46:1–11.
  • Taheri MT, Alavi-Kia SS, Mohammadi SA, et al. Assessment of genetic diversity and relationships among Triticum urartu and Triticum boeoticum populations from Iran using IRAP and REMAP markers. Genet Resour Crop Evol. 2018;65(7):1867–1878.
  • Pour-Aboughadareh A, Ahmadi J, Mehrabi AA, et al. Assessment of genetic diversity among Iranian Triticum germplasm using agro-morphological traits and start codon targeted (SCoT) markers. Cereal Res Commun. 2017;45(4):574–586.
  • Chakraborty R. Human population genetics. Boston: Springer Press; 1993.