938
Views
3
CrossRef citations to date
0
Altmetric
Articles

Isolation and identification of a psychrotolerant dimethyl phthalate-degrading bacterium from selected frozen soil of high-latitude areas in China and optimization of its fermentation conditions using response surface methodology

, , , , , , & show all
Pages 1706-1720 | Received 22 Jul 2019, Accepted 20 Nov 2019, Published online: 29 Nov 2019

References

  • Xu B, Gao NY, Cheng HF, et al. Oxidative degradation of dimethyl phthalate (DMP) by UV/H2O2 process. J Hazard Mater. 2009;162(2-3):954–959.
  • Latini G. Monitoring phthalate exposure in humans. Clin Chim Acta. 2005;361(1-2):20–29.
  • Boonnorat J, Chiemchaisri C, Chiemchaisri W, et al. Removals of phenolic compounds and phthalic acid esters in landfill leachate by microbial sludge of two-stage membrane bioreactor. J Hazard Mater. 2014;277:93–101.
  • Pivnenko K, Eriksen MK, Martín-Fernández JA, et al. Recycling of plastic waste: presence of phthalates in plastics from households and industry. Waste Manage. 2016;54:44–52.
  • Bhatia H, Kumar A, Ogino Y, et al. Di-n-butyl phthalate causes estrogenic effects in adult male Murray rainbowfish (Melanotaenia fluviatilis). Aquat Toxicol. 2014;149:103–115.
  • Santangeli S, Maradonna F, Zanardini M, et al. Effects of diisononyl phthalate on Danio rerio reproduction. Environ Pollut. 2017;231:1051–1062.
  • Pant N, Shukla M, Kumar Patel D, et al. Correlation of phthalate exposures with semen quality. Toxicol Appl Pharmacol. 2008;231(1):112–116.
  • Wu D, Mahmood Q, Wu LL, et al. Activated sludge-mediated biodegradation of dimethyl phthalate under fermentative conditions. J Environ Sci. 2008;20(8):922–926.
  • Wang J, Luo YM, Teng Y, et al. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film. Environ Pollut. 2013;180:265–273.
  • Niu L, Xu Y, Xu C, et al. Status of phthalate esters contamination in agricultural soils across China and associated health risks. Environ Pollut. 2014;195:16–23.
  • Wu W, Hu J, Wang JQ, et al. Analysis of phthalate esters in soils near an electronics manufacturing facility and from a non-industrialized area by gas purge microsyringe extraction and gas chromatography. Sci Total Environ. 2015;508:445–451.
  • He LZ, Gielen G, Bolan NS, et al. Contamination and remediation of phthalic acid esters in agricultural soils in China: a review. Agron Sustain Dev. 2015;35(2):519–534.
  • Wang ZG, Hu YL, Xu WH, et al. Impacts of dimethyl phthalate on the bacterial community and functions in black soils. Front Microbiol. 2015;6:405.
  • Abdel Daiem MM, Rivera-Utrilla J, Ocampo-Pérez R, et al. Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies-A review. J Environ Manage. 2012;109:164–178.
  • Zeng F, Cui KY, Li XD, et al. Biodegradation kinetics of phthalate esters by Pseudomonas fluoresences FS1. Process Biochem. 2004;39(9):1125–1129.
  • Zhang JF, Zhang CN, Zhu YP, et al. Biodegradation of seven phthalate esters by Bacillus mojavensis B1811. Int Biodeterior Biodegrad. 2018;132:200–207.
  • Yang J, Guo CL, Liu SS, et al. Characterization of a di-n-butyl phthalate-degrading bacterial consortium and its application in contaminated soil. Environ Sci Pollut Res. 2018;25(18):17645–17653.
  • Gao DW, Wen ZD. Phthalate esters in the environment: a critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Sci Total Environ. 2016;541:986–1001.
  • Dong YL, Li H, Rong SH, et al. Isolation and evaluation of Bacillus amyloliquefaciens Rdx5 as a potential biocontrol agent against Magnaporthe oryzae. Biotechnol Biotechnol Equip. 2019;33:1–11.
  • Zhou Y, Hu LF, Song JB, et al. Isolation and characterization of a MADS-box gene in cucumber (Cucumis sativus L.) that affects flowering time and leaf morphology in transgenic Arabidopsis. Biotechnol Biotechnol Equip. 2019; 33(1):54–63.
  • Wang HY, Zhang W, Ye YP, et al. Isolation and characterization of Pseudoxanthomonas sp. strain YP1 capable of denitrifying phosphorus removal (DPR). Geomicrobiol J. 2018;35(6):537–543.
  • Xu ZW, Cheng L, Shi J, et al. Kinetic study of the removal of dimethyl phthalate from an aqueous solution using an anion exchange resin. Environ Sci Pollut Res. 2014;21(10):6571–6577.
  • Collins CH, Lyne PM, Grange JM, et al. Microbiological methods. London: Arnold; 2004.
  • Kabdaşlı I, Olmez-Hanci T, Tünay O, et al. Application of response surface methodology for dimethyl phthalate treatment via H2O2/UV-C process. Desalin Water Treat. 2016;57(54):26165–26173.
  • Plackett RL, Burman JP. The design of optimum multifactorial experiments. Biometrika. 1946;33(4):305–325.
  • Hu GJ, Li JB, Zhang XY, et al. Investigation of waste biomass co-pyrolysis with petroleum sludge using a response surface methodology. J Environ Manage. 2017;192:234–242.
  • Kar S, Ray RC. Statistical optimization of alpha-amylase production by Streptomyces erumpens MTCC 7317 cells in calcium alginate beads using response surface methodology. Pol J Microbiol. 2008;57(1):49–57.
  • Wu DL, Mahmood Q, Zheng P, et al. Isolation and physiology of a dimethyl phthalate degrading bacterial strain YZ2. Environ Prog. 2007;26(4):384–390.
  • Surhio MA, Talpur FN, Nizamani SM, et al. Complete degradation of dimethyl phthalate by biochemical cooperation of the Bacillus thuringiensis strain isolated from cotton field soil. RSC Adv. 2014;4(99):55960–55966.
  • Zhang XH, Liu LC, Zhang SP, et al. Biodegradation of dimethyl phthalate by freshwater unicellular cyanobacteria. Biomed Res Int. 2016;2016:1.
  • Lu Y, Tang F, Wang Y, et al. Biodegradation of dimethyl phthalate, diethyl phthalate and di-n-butyl phthalate by Rhodococcus sp. L4 isolated from activated sludge. J Hazard Mater. 2009;168(2-3):938–943.
  • Wang JL, Chen LJ, Shi HC, et al. Microbial degradation of phthalic acid esters under anaerobic digestion of sludge. Chemosphere. 2000;41(8):1245–1248.
  • Michael JJ, Abbott SL. Bacterial identification for publication: when is enough enough? J Clin Microbiol. 2002;40(6):1887–1891.
  • Pitol LO, Finkler ATJ, Dias GS, et al. Optimization studies to develop a low-cost medium for production of the lipases of Rhizopus microsporus by solid-state fermentation and scale-up of the process to a pilot packed-bed bioreactor. Process Biochem. 2017;62:37–47.
  • Jia J, Yang XF, Wu ZL, et al. Optimization of fermentation medium for extracellular lipase production from Aspergillus niger using response surface methodology. Biomed Res Int. 2015;2015:1.
  • Mao XB, Eksriwong T, Chauvatcharin S, et al. Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Process Biochem. 2005;40(5):1667–1672.
  • Zou MY, Guo FF, Li XZ, et al. Enhancing production of alkaline polygalacturonate lyase from Bacillus subtilis by fed-batch fermentation. PLoS One. 2014;9(3):e90392.
  • Nielsen CK, Kjems J, Mygind T, et al. Effects of Tween 80 on growth and biofilm formation in laboratory media. Front Microbiol. 2016;7:1878.
  • Todorov SD, Vaz-Velho M, de Melo Franco BDG, et al. Partial characterization of bacteriocins produced by three strains of Lactobacillus sakei, isolated from salpicao, a fermented meat product from North-West of Portugal. Food Control. 2013;30(1):111–121.
  • Thibault J, Pouliot K, Agosin E, et al. Reassessment of the estimation of dissolved oxygen concentration profile and KLa in solid-state fermentation. Process Biochem. 2000;36(1-2):9–18.
  • Arthur Felse P, Panda T. Submerged culture production of chitinase by Trichoderma harzianum in stirred tank bioreactors-the influence of agitator speed. Biochem Eng J. 2000;4(2):115–120.
  • Bao YL, Ye ZF. Application of an integrated statistical design for optimization of culture condition for ammonium removal by Nitrosomonas europaea. PLoS One. 2013;8(4):e60322.
  • Peng HS, Tan J, Bilal M, et al. Enhanced biosynthesis of phenazine-1-carboxamide by Pseudomonas chlororaphis strains using statistical experimental designs. World J Microbiol Biotechnol. 2018;34(9):129.
  • Isiaka Adetunji A, Olufolahan Olaniran A. Optimization of culture conditions for enhanced lipase production by an indigenous Bacillus aryabhattai SE3-PB using response surface methodology. Biotechnol Biotechnol Equip. 2018;32(6):1514–1526.
  • Kamble PP, Suryawanshi SS, Jadhav JP, et al. Enhanced inulinase production by Fusarium solani JALPK from invasive weed using response surface methodology. J Microbiol Methods. 2019;159:99–111.
  • Silva V, Couto N, Eusébio D, et al. Multi-stage optimization in a pilot scale gasification plant. Int J Hydrogen Energy. 2017;42(37):23878–23890.
  • Kar S, Ray RC, Mohapatra UB. Alpha-amylase production by Streptomyces erumpens MTCC 7317 in solid state fermentation using response surface methodology (RSM). Pol J Microbiol. 2008;57(4):289–296.
  • Ben Mefteh F, Frikha F, Daoud A, et al. Response surface methodology optimization of an acidic protease produced by Penicillium bilaiae isolate TDPEF30, a newly recovered endophytic fungus from healthy roots of date palm trees (Phoenix dactylifera L.). Microorganisms. 2019;7(3):74.
  • Fu ZL, Sun BG, Li XT, et al. Isolation and characterization of a high ethyl acetate-producing yeast from Laobaigan Daqu and its fermentation conditions for producing high-quality Baijiu. Biotechnol Biotechnol Equip. 2018;32(5):1218–1227.
  • Farag S, Soliman NA, Abdel-Fattah YR. Statistical optimization of crude oil bio-degradation by a local marine bacterium isolate Pseudomonas sp. sp48. J Genet Eng Biotechnol. 2018;16(2):409–420.