2,035
Views
9
CrossRef citations to date
0
Altmetric
Articles

Metagenomic analysis of the microbial community structure in protected wetlands in the Maritza River Basin

, , , , , , & show all
Pages 1721-1732 | Received 10 Sep 2019, Accepted 21 Nov 2019, Published online: 29 Nov 2019

References

  • Stoyneva MP, Michev TM. Inventory of Bulgarian wetlands and their biodiversity. Sofia (Bulgaria): House Svetlostrouy; 2007 (in Bulgarian).
  • Kadlec RH, Knight RL. Treatment wetlands.1st ed. Boca Raton (FL): CRC Press; 1996.
  • Peralta AL, Matthews JW, Kent AD. Microbial community structure and denitrification in a wetland mitigation bank. Appl Environ Microbiol. 2010;76(13):4207–4215.
  • Bodelier PLE, Dedysh SN. Microbiology of wetlands. Front Microbiol. 2013;4:79.
  • He S, Malfatti SA, McFarland JW, et al. Patterns in wetland microbial community composition and functional gene repertoire associated with methane emissions. mBio. 2015; 6(3):e00066–15.
  • Vassilev V, Vassilev R, Yankov P, et al. National action plan for conservation of wetlands of high significance in Bulgaria (2013–2020). Sofia: Bulgarian Biodiversity Foundation Design and Print by C Print Ltd; 2013.
  • EC Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the conservation of wild birds. Off J Eur Union. 2009;L20:7–25. Available from: eur-lex.europa.eu
  • Kögel-Knabner I, Amelung W, Cao Z, et al. Biogeochemistry of paddy soils. Geoderma 2010;157(1–2):1–14.
  • Breaux A, Serefiddin F. Validity of performance criteria and a tentative model for regulatory use in compensatory wetland mitigation permitting. Environ Manage. 1999;24(3):327–336.
  • Lv X, Yu J, Fu Y, et al. A meta-analysis of the bacterial and archaeal diversity observed in wetland soils. Sci World J. 2014;2014:1.
  • Huang W, Chen X, Jiang X, et al. Characterization of sediment bacterial communities in plain lakes with different trophic statuses. Microbiol Open. 2017;6:e503.
  • Zinger L, Boetius A, Ramette A. Bacterial taxa–area and distance–decay relationships in marine environments. Mol Ecol. 2014;23(4):954–964.
  • Wang Y, Sheng H-F, He Y, et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl Environ Microbiol. 2012;78(23):8264–8271.
  • Ying T, Wei C. Soil microbiomes – a promising strategy for contaminated soil remediation: a review. Pedosphere. 2019;29(3):283–297.
  • Eissler Y, Galvez M-J, Dorator C, et al. Active microbiome structure and its association with environmental factors and viruses at different aquatic sites of a high-altitude wetland. Microbiol Open. 2017;8:e667.
  • Molina V, Hernández K, Dorador C, et al. Bacterial active community cycling in response to solar radiation and their influence on nutrient changes in a high-altitude wetland. Front Microbiol. 2016;7:1–15.
  • Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15(10):579–590.
  • Luo X, Fu X, Yang Y, et al. Microbial communities play important roles in modulating paddy soil fertility. Sci Rep. 2016;6(1):20326.
  • Motsara MR, Roy RN. Guide to laboratory establishment for plant nutrient analysis. Rome (Italy): Fao. 2008.
  • Bremner JM, Mulvaney CS. Total nitrogen In: Page AL, Miller RH, and Keeny DR, editors. Methods of soil analysis. Madison: American Society of Agronomy and Soil Science Society of America; 1982. p. 1119–1123.
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120.
  • Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–2461.
  • Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–336.
  • Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research. 2012;41(D1):D590–D596.
  • Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a Web browser. BMC Bioinformatics. 2011;12(1):385.
  • Horton DJ, Theis KR, Uzarski DG, et al. Microbial community structure and microbial networks correspond to nutrient gradients within coastal wetlands of the Laurentian Great Lakes. FEMS Microbiol Ecol. 2019;95:fiz033.
  • Anderson MJ, Walsh DC. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol Monogr. 2013;83(4):557–574.
  • Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26(1):32–46.
  • Li H, Su J-Q, Yang X-R, et al. Distinct rhizosphere effect on active and total bacterial communities in paddy soils. Sci Total Environ. 2019;649:422–430.
  • Sjøgaard KS, Valdemarsen TB, Treusch AH. Responses of an agricultural soil microbiome to flooding with seawater after managed coastal realignment. Microorganisms. 2018;6(1):12.
  • Arroyo P, Sáenz de Miera LE, Ansola G. Influence of environmental variables on the structure and composition of soil bacterial communities in natural and constructed wetlands. Sci Total Environ. 2015;506–507:380–390.
  • Pittol M, Scully E, Miller D, et al. Bacterial community of the rice floodwater using cultivation-independent approaches. Int J Microbiol. 2018;2018:1.
  • Barber N, Chantos-Davidson KM, Peralta RA, et al. Soil microbial community composition in tallgrass prairie restorations converge with remnants across a 27-year chronosequence. Environ Microbiol. 2017;19(8):3118–3131.
  • Mackelprang R, Grube AM, Lamendella R, et al. Microbial community structure and functional potential in cultivated and native tallgrass prairie soils of the Midwestern United States. Front Microbiol. 2018;9:1775.
  • Schmidt H, Eickhorst T. Spatio-temporal variability of microbial abundance and community structure in the puddled layer of a paddy soil cultivated with wetland rice (Oryza sativa L.). Appl Soil Ecol. 2013;72:93–102.
  • Foulquier A, Volat B, Neyra M, et al. Long-term impact of hydrological regime on structure and functions of microbial communities in riverine wetland sediments. FEMS Microbiol Ecol. 2013;85(2):211–216.
  • Mentzer JL, Goodman RM, Balser Teri C. Microbial response over time to hydrologic and fertilization treatments in a simulated wet prairie. Plant Soil. 2006;284(1–2):85–100.
  • Rees GN, Watson GO, Baldwin DS, et al. Variability in sediment microbial communities in a semipermanent stream: impact of drought. J N Am Benthol Soc. 2006;25(2):370–378.
  • Girvan MS, Campbell CD, Killham K, et al. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ Microbiol. 2005;7(3):301–313.
  • Griffiths RI, Thomson BC, James P, et al. The bacterial biogeography of British soils. Environ Microbiol. 2011;13(6):1642–1654.
  • Thomson BC, Tisseran E, Plassart P, et al. Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites. Soil Biol Biochem. 2015;88:403–413.
  • Bai R, Wang J-T, He J-Z, et al. Microbial community and functional structure significantly varied among distinct types of paddy soils but responded differently along gradients of soil depth layers. Front Microbiol. 2017;8:945.
  • Kong AYY, Six J, Bryant DC, et al. The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Sci Soc Am J. 2005;69(4):1078–1085.
  • Hou P-F, Chien C-H, Chiang-Hsieh Y-F, et al. Paddy-upland rotation for sustainable agriculture with regards to diverse soil microbial community. Sci Rep. 2018;8(1):7966.
  • Peralta AL, Ludmer S, Kent AD. Hydrologic history influences microbial community composition and nitrogen cycling under experimental drying/wetting treatments. Soil Biol Biochem. 2013;66:29–37.
  • Schrempf H. Actinobacteria within soils: capacities for mutualism, symbiosis and pathogenesis. FEMS Microbiol Lett. 2013;342(2):77–78.
  • Ansola G, Arroyo P, Sáenz de Miera LE. Characterization of the soil bacterial community structure and composition of natural and constructed wetlands. Sci Total Environ. 2014;473–474(2014):63–71.
  • Navarrete AA, Venturini AM, Meyer KM, et al. Differential response of Acidobacteria subgroups to forest-to-pasture conversion and their biogeographic patterns in the Western Brazilian Amazon. Front Microbiol. 2015;6:1443.
  • Fierer N, Leff JW, Adams BJ, et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Nat Acad Sci. 2012;109(52):21390–21395.
  • Lüdemann H, Arth I, Liesack W. Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Appl Environ Microbiol. 2000;66:754–762.
  • Eilers KG, Debenport S, Anderson S, et al. Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol Biochem. 2012;50:58–65.
  • Hester ER, Harpenslager SF, Jmh V. D., et al. Linking nitrogen load to the structure and function of wetland soil and rhizosphere microbial communities. bioRxiv. 2017:197855.
  • Beardsley C, Moss S, Malfatti F, et al. Quantitative role of shrimp fecal bacteria in organic matter fluxes in a recirculating shrimp aquaculture system. FEMS Microbiol Ecol. 2011;77(1):134–145.
  • Kunihiro T, Takasu H, Miyazaki T, et al. Increase in Alphaproteobacteria in association with a polychaete, Capitella sp I, in the organically enriched sediment. ISME J. 2011;5(11):1818–1831.
  • Yao S, Ni J, Ma T, et al. Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2. Bioresour Technol. 2013;139:80–86.
  • Ma X, Song X, Li X, et al. Characterization of microbial communities in pilot-scale constructed wetlands with Salicornia for treatment of marine aquaculture effluents. Archaea. 2018;2018:1.
  • Theodorakopoulos N, Bachar D, Christen R, et al. Exploration of deinococcus-thermus molecular diversity by novel group-specific PCR primers. Microbiol Open. 2013;2(5):862–872.
  • Zhang XX, Zhang RJ, Gao JS, et al. Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biol Biochem. 2017;104:208–217.
  • Chen Y, Kuang J, Jia P, et al. Effect of environmental variation on estimating the bacterial species richness. Front Microbiol. 2017;8:690.
  • Ahn C, Peralta RM. Soil bacterial community structure and physicochemical properties in mitigation wetlands created in the Piedmont region of Virginia (USA). Ecol Eng. 2009;35(7):1036–1042.
  • Lopes AR, Manaia CM, Nunes OC. Bacterial community variations in an alfalfa-rice rotation system revealed by 16S rRNA gene 454-pyrosequencing. FEMS Microbiol Ecol. 2014;87(3):650–663.
  • Kent AD, Jones SE, Yannarell AC, et al. Annual patterns in bacterioplankton community variability in a humic lake. Microb Ecol. 2004;48(4):550–560.
  • Ferrenberg S, O'Neill S, Knelman JE, et al. Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME J. 2013;7(6):1102–1111.
  • Allen B, Willner D, Oechel WC, et al. Top-down control of microbial activity and biomass in an Arctic soil ecosystem. Environ Microbiol. 2010;12(3):642–648.