962
Views
0
CrossRef citations to date
0
Altmetric
Articles

Prioritization of genetic variants predisposing to coronary heart disease in the Bulgarian population using centenarian exomes

, , , , , , , , , , , , & show all
Pages 1757-1765 | Received 19 Aug 2019, Accepted 29 Nov 2019, Published online: 09 Dec 2019

References

  • Sanchis-Gomar F, Perez-Quilis C, Leischik R, et al. Epidemiology of coronary heart disease and acute coronary syndrome. Ann Transl Med. 2016;4(13):256.
  • Ferreira-González I. The epidemiology of coronary heart disease. Rev Esp Cardiol. 2014;67(2):139–144.
  • Kzhyshkowska J, Neyen C, Gordon S. Role of macrophage scavenger receptors in atherosclerosis. Immunobiology 2012;217(5):492–502.
  • Linton MF, Tao H, Linton EF, et al. SR-BI: a multifunctional receptor in cholesterol homeostasis and atherosclerosis. Trends Endocrinol Metab. 2017;28(6):461–472.
  • Park YM. CD36, a scavenger receptor implicated in atherosclerosis. Exp Mol Med. 2014;46:e99.
  • Pothineni NVK, Karathanasis SK, Ding Z, et al. LOX-1 in atherosclerosis and myocardial ischemia: biology, genetics, and modulation. J Am Coll Cardiol. 2017;69(22):2759–2768.
  • Fatkhullina AR, Peshkova IO, Koltsova EK. The role of cytokines in the development of atherosclerosis. Biochemistry Moscow. 2016;81(11):1358–1370.
  • Hartman J, Frishman WH. Inflammation and atherosclerosis: a review of the role of interleukin-6 in the development of atherosclerosis and the potential for targeted drug therapy. Cardiol Rev. 2014;22(3):147–151.
  • Hu W, Huang Y. Targeting the platelet-derived growth factor signalling in cardiovascular disease. Clin Exp Pharmacol Physiol. 2015;42(12):1221–1224.
  • Libby P. Interleukin-1 beta as a target for atherosclerosis therapy: biological basis of CANTOS and beyond. J Am Coll Cardiol. 2017;70(18):2278–2289.
  • Oikonomou E, Economou EK, Tousoulis D, et al. Inflammatory cytokines in atherosclerosis: current therapeutic approaches. Eur Heart J. 2016;37(22):1723–1732.
  • van der Vorst EPC, Döring Y, Weber C. Chemokines and their receptors in atherosclerosis. J Mol Med. 2015;93(9):963–971.
  • Xie W, Li L, Zheng X-L, et al. The role of Krüppel-like factor 14 in the pathogenesis of atherosclerosis. Atherosclerosis 2017;263:352–360.
  • Zeng L, Dang TA, Schunkert H. Genetics links between transforming growth factor β pathway and coronary disease. Atherosclerosis 2016;253:237–246.
  • Chistiakov DA, Orekhov AN, Bobryshev YV. Endothelial PECAM-1 and its function in vascular physiology and atherogenic pathology. Exp Mol Pathol. 2016;100(3):409–415.
  • Finney AC, Stokes KY, Pattillo CB, et al. Integrin signaling in atherosclerosis. Cell Mol Life Sci. 2017;74(12):2263–2282.
  • McEver RP. Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc Res. 2015;107(3):331–339.
  • Schmidt EP, Kuebler WM, Lee WL, et al. Adhesion molecules: master controllers of the circulatory system. Compr Physiol. 2016;6(2):945–973.
  • Brown BA, Williams H, George SJ. Evidence for the involvement of matrix-degrading metalloproteinases (MMPs) in atherosclerosis. Prog Mol Biol Transl Sci. 2017;147:197–237.
  • Ruddy JM, Ikonomidis JS, Jones JA. Multidimensional contribution of matrix metalloproteinases to atherosclerotic plaque vulnerability: multiple mechanisms of inhibition to promote stability. J Vasc Res. 2016;53(1-2):1–16.
  • Vacek TP, Rehman S, Neamtu D, et al. Matrix metalloproteinases in atherosclerosis: role of nitric oxide, hydrogen sulfide, homocysteine, and polymorphisms. Vasc Health Risk Manag. 2015;11:173–183.
  • Dimitris T, Anna-Maria K, Costas Tentolouris Nikolaos P, et al. The role of nitric oxide on endothelial function. Curr Vasc Pharmacol. 2012;10(1):4–18.
  • Förstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res. 2017;120(4):713–735.
  • Li H, Horke S, Förstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis 2014;237(1):208–219.
  • El Assar M, Angulo J, Rodríguez-Mañas L. Oxidative stress and vascular inflammation in aging. Free Radic Biol Med. 2013;65:380–401.
  • Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 2011;15(6):1583–1606.
  • Kattoor AJ, Pothineni NVK, Palagiri D, et al. Oxidative stress in atherosclerosis. Curr Atheroscler Rep. 2017;19(11):42.
  • Chinetti-Gbaguidi G, Staels B. PPARβ in macrophages and atherosclerosis. Biochimie 2017;136:59–64.
  • Jakobs P, Serbulea V, Leitinger N, et al. Nuclear factor (erythroid-derived 2)-like 2 and thioredoxin-1 in atherosclerosis and ischemia/reperfusion injury in the heart. Antioxid Redox Signal. 2017;26(12):630–644.
  • Yu X-H, Zheng X-L, Tang C-K. Chapter 7: Peroxisome proliferator-activated receptor α in lipid metabolism and atherosclerosis. In: Makowski GS, editor. Advances in clinical chemistry. Vol. 71. Amsterdam: Elsevier; 2015. p. 171–203.
  • Yu X-H, Zheng X-L, Tang C-K. Chapter 1: Nuclear factor-κB activation as a pathological mechanism of lipid metabolism and atherosclerosis. In: Makowski GS, editor. Advances in clinical chemistry. Vol. 70: Amsterdam: Elsevier; 2015. p. 1–30.
  • Kirov G, Zaharieva I, Georgieva L, et al. A genome-wide association study in 574 schizophrenia trios using DNA pooling. Mol Psychiatry. 2009;14(8):796–803.
  • Popp B, Ekici AB, Thiel CT, et al. Exome pool-seq in neurodevelopmental disorders. Eur J Hum Genet. 2017;25(12):1364–1376.
  • Schlötterer C, Tobler R, Kofler R, et al. Sequencing pools of individuals — mining genome-wide polymorphism data without big funding. Nat Rev Genet. 2014;15(11):749–763.
  • Yang H, Wang K. Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc. 2015;10(10):1556–1566.
  • Zerbino DR, Achuthan P, Akanni W, et al. Ensembl 2018. Nucleic Acids Res. 2018;46(D1):D754–D761.
  • Piñero J, Bravo À, Queralt-Rosinach N, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017;45(D1):D833–D9.
  • Chen J, Bardes EE, Aronow BJ, et al. ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res. 2009;37(Web Server issue):W305–W11.
  • Pita-Juárez Y, Altschuler G, Kariotis S, et al. The pathway coexpression network: revealing pathway relationships. PLoS Comput Biol. 2018;14(3):e1006042.
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;57(1):289–300.
  • Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Statist. 2001;29(4):1165–1188.
  • Frey UH, Moebus S, Mohlenkamp S, et al. GNB3 gene 825 TT variant predicts hard coronary events in the population-based Heinz Nixdorf Recall study. Atherosclerosis 2014;237(2):437–442.
  • Hayakawa T, Takamura T, Abe T, et al. Association of the C825T polymorphism of the G-protein beta3 subunit gene with hypertension, obesity, hyperlipidemia, insulin resistance, diabetes, diabetic complications, and diabetic therapies among Japanese. Metabolism 2007;56(1):44–48.
  • Niu C, Luo Z, Yu L, et al. Associations of the APOB rs693 and rs17240441 polymorphisms with plasma APOB and lipid levels: a meta-analysis. Lipids Health Dis. 2017;16(1):166.
  • Karami F, Salahshourifar I, Houshmand M. The study of rs693 and rs515135 in APOB in people with familial hypercholestrolemia. Cell J. 2019;21(1):86–91.
  • Shan J-G, Xue S. MTHFR C677T polymorphism and coronary artery disease risk in the Chinese population: a meta-analysis based on 33 studies. Int J Clin Exp Med 2016;9(2):2822–2830.
  • Ericson U, Sonestedt E, Ivarsson MI, et al. Folate intake, methylenetetrahydrofolate reductase polymorphisms, and breast cancer risk in women from the Malmo Diet and Cancer cohort. Cancer Epidemiol Biomarkers Prev. 2009;18(4):1101–1110.
  • Luo Z, Lu Z, Muhammad I, et al. Associations of the MTHFR rs1801133 polymorphism with coronary artery disease and lipid levels: a systematic review and updated meta-analysis. Lipids Health Dis. 2018;17(1):191.
  • Schuchardt JP, Köbe T, Witte V, et al. Genetic variants of the FADS gene cluster are associated with erythrocyte membrane LC PUFA levels in patients with mild cognitive impairment. J Nutr Health Aging. 2016;20(6):611–620.
  • Hallmann J, Kolossa S, Gedrich K, et al. Predicting fatty acid profiles in blood based on food intake and the FADS1 rs174546 SNP. Mol Nutr Food Res. 2015;59(12):2565–2573.
  • Bokor S, Dumont J, Spinneker A, et al. Single nucleotide polymorphisms in the FADS gene cluster are associated with delta-5 and delta-6 desaturase activities estimated by serum fatty acid ratios. J Lipid Res. 2010;51(8):2325–2333.
  • Kächele M, Hennige AM, Machann J, et al. Variation in the phosphoinositide 3-kinase gamma gene affects plasma HDL-cholesterol without modification of metabolic or inflammatory markers. PLoS One. 2015;10(12):e0144494.
  • Hamidizadeh L, Haji Hosseini Baghdad Abadi R, Babaee Baigi MA, et al. Impact of KIF6 polymorphism rs20455 on coronary heart disease risk and effectiveness of statin therapy in 100 patients from Southern Iran. Arch Iran Med. 2015;18(10):683–687.
  • Li Y, Chen Z, Song H. Association between KIF6 rs20455 polymorphism and the risk of coronary heart disease (CHD): a pooled analysis of 50 individual studies including 40,059 cases and 64,032 controls. Lipids Health Dis. 2018;17(1):4.
  • Vishnuprabu D, Geetha S, Bhaskar L, et al. Genotyping and meta-analysis of KIF6 Trp719Arg polymorphism in South Indian Coronary Artery Disease patients: A case-control study. Meta Gene. 2015;5:129–134.
  • Vergeer M, Cohn DM, Boekholdt SM, et al. Lack of association between common genetic variation in endothelial lipase (LIPG) and the risk for CAD and DVT. Atherosclerosis 2010;211(2):558–564.
  • Badellino KO, Wolfe ML, Reilly MP, et al. Endothelial lipase concentrations are increased in metabolic syndrome and associated with coronary atherosclerosis. PLoS Med. 2005;3(2):e22.
  • Edmondson AC, Brown RJ, Kathiresan S, et al. Loss-of-function variants in endothelial lipase are a cause of elevated HDL cholesterol in humans. J Clin Invest. 2009;119(4):1042–1050.
  • Wang F, Ji Y, Chen X, et al. ABCA1 variants rs2230806 (R219K), rs4149313 (M8831I), and rs9282541 (R230C) are associated with susceptibility to coronary heart disease. J Clin Lab Anal. 2019;33(6):20.
  • Ma XY, Liu JP, Song ZY. Associations of the ATP-binding cassette transporter A1 R219K polymorphism with HDL-C level and coronary artery disease risk: a meta-analysis. Atherosclerosis 2011;215(2):428–434.
  • Ghaznavi H, Aali E, Soltanpour MS. Association study of the ATP - binding cassette transporter A1 (ABCA1) Rs2230806 genetic variation with lipid profile and coronary artery disease risk in an Iranian population. Open Access Maced J Med Sci. 2018;6(2):274–279.
  • Wu N, Zhang X, Jia P, et al. Lack of an association between the SDF-1 rs1801157 polymorphism and coronary heart disease: a meta-analysis. Sci Rep. 2015;5(1):11803.