1,834
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Mutation of genes for cell membrane synthesis in Corynebacterium glutamicum causes temperature-sensitive trait and promotes L-glutamate excretion

, , , ORCID Icon, , & show all
Pages 38-47 | Received 13 Oct 2019, Accepted 30 Dec 2019, Published online: 16 Jan 2020

References

  • Stansen C, Uy D, Delaunay S, et al. Characterization of a Corynebacterium glutamicum lactate utilization operon induced during temperature-triggered glutamate production. Appl Environ Microbiol. 2005;71(10):5920–5928.
  • Yu W, Guoqiang C, Deyu X, et al. A novel Corynebacterium glutamicum l-glutamate exporter. Appl Environ Microbiol. 2018;84(6):e02691–e02717. [cited 2019 Dec 17],
  • Kataoka M, Hashimoto KI, Yoshida M, et al. Gene expression of Corynebacterium glutamicum in response to the conditions inducing glutamate overproduction. Lett Appl Microbiol. 2006;42(5):471–476.
  • Eggeling L, Krumbach K, Sahm H. L-Glutamate excretion with Corynebacterium glutamicum: why is penicillin treatment or Tween addition doing the same? J Mol Microbiol Biotechnol. 2001;3:67–68.
  • Ciement Y, Laneelle G. Glutamate excretion mechanism in Corynebacterium glutamicum: triggering by biotin starvation or by surfactant addition. Microbiology 1986;132:925–929.
  • Radmacher E, Stansen KC, Besra GS, et al. Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate excretion of Corynebacterium glutamicum. Microbiology. 2005;151(5):1359–1368.
  • Hoischen C, Krämer R. Membrane alteration is necessary but not sufficient for effective glutamate secretion in Corynebacterium glutamicum. J Bacteriol. 1990;172(6):3409–3416.
  • Delaunay S, Gourdon P, Lapujade P, et al. An improved temperature triggered process for glutamate production with Corynebacterium glutamicum. Enzyme Microb Technol. 1999;25(8–9):762–768.
  • Delaunay S, Uy D, Baucher MF, et al. Importance of phosphoenolpyruvate carboxylase of Corynebacterium glutamicum during the temperature triggered glutamic acid fermentation. Metab Eng. 1999;1(4):334–343.
  • Uy D, Delaunay S, Germain P, et al. Instability of glutamate production by Corynebacterium glutamicum 2262 in continuous culture using the temperature-triggered process. J Biotechnol. 2003;104(1–3):173–184.
  • Lapujade P, Goergen JL, Engasser JM. Glutamate excretion as a major kinetic bottleneck for the thermally triggered production of glutamic acid by Corynebacterium glutamicum. Metab Eng. 1999;1(3):255–261.
  • Bokas D, Uy D, Grattepanche F, et al. Cell envelope fluidity modification for an effective glutamate excretion in Corynebacterium glutamicum 2262. Appl Microbiol Biotechnol. 2007;76(4):773–781.
  • Qian M, Quanwei Z, Qingyang X, et al. Systems metabolic engineering strategies for the production of amino acids. Synth Syst Biotechnol. 2017; 2(2):87–96.
  • Schäfer A, Tauch A, Jäger W, et al. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 1994;145(1):69–73.
  • Sambrook J, MacCallum P, Russell D. Molecular cloning: a laboratory manual. New York (NY): Cold Spring Harbor Laboratory Press; 2001.
  • Chenglin Z, Yanjun L, Jie M, et al. High production of 4-hydroxyisoleucine in Corynebacterium glutamicum by multistep metabolic engineering. Metab Eng. 2018;49:287–298.
  • Denisov G, Walenz B, Halpern AL, et al. Consensus generation and variant detection by Celera Assembler. Bioinformatics. 2008;24(8):1035–1040.
  • Moriya Y, Itoh M, Okuda S, et al. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35:W182–W185.
  • Hirasawa T, Wachi M, Nagai K. A mutation in the Corynebacterium glutamicum ltsA gene causes susceptibility to lysozyme, temperature-sensitive growth, and L-glutamate production. J Bacteriol. 2000;182(10):2696–2701.
  • Irzik K, van Ooyen J, Gätgens J, et al. Acyl-CoA sensing by FasR to adjust fatty acid synthesis in Corynebacterium glutamicum. J Biotechnol. 2014;192:96–101.
  • Tuo S, Qian M, Xiaoqian L, et al. Double deletion of murA and murB induced temperature sensitivity in Corynebacterium glutamicum. Bioengineered 2019;10(1):561–573.
  • Liu YB, Chen C, Chaudhry MT, et al. Enhancing Corynebacterium glutamicum robustness by over-expressing a gene, mshA, for mycothiol glycosyltransferase. Biotechnol Lett. 2014;36(7):1453–1459.
  • Loi VV, Rossius M, Antelmann H. Redox regulation by reversible protein S-thiolation in bacteria. Front Microbiol. 2015;6:187.
  • Berterame NM, Bertagnoli S, Codazzi V, et al. Temperature-induced lipocalin (TIL): a shield against stress-inducing environmental shocks in Saccharomyces cerevisiae. FEMS Yeast Res 2017;17(6):fox056. [cited 2019 Dec 17],
  • Nakayama Y, Hashimoto K, Sawada Y, et al. Corynebacterium glutamicum mechanosensitive channels: towards unpuzzling “glutamate efflux” for amino acid production. Biophys Rev. 2018;10(5):1359–1369.
  • Becker M, Börngen K, Nomura T, et al. Glutamate efflux mediated by Corynebacterium glutamicum MscCG, Escherichia coli MscS, and their derivatives. Biochim Biophys Acta. 2013;1828(4):1230–1240.
  • Nakamura J, Hirano S, Ito H, et al. Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce l-glutamic acid production. Appl Environ Microbiol. 2007;73(14):4491–4498.
  • Wei ZH, Wu H, Bai LQ, et al. Temperature shift-induced reactive oxygen species enhanced validamycin A production in fermentation of Streptomyces hygroscopicus 5008. Bioproc Biosyst Eng. 2012;35(8):1309–1316.
  • Wendisch VF, Jorge JMP, Pérez-García F, et al. Updates on industrial production of amino acids using Corynebacterium glutamicum. World J Microbiol Biotechnol. 2016;32(6):105.
  • Nampoothiri K, Hoischen C, Bathe B, et al. Expression of genes of lipid synthesis and altered lipid composition modulates L-glutamate efflux of Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2002;58(1):89–96.
  • Fontanille P, Larroche C. Optimization of isonovalal production from α-pinene oxide using permeabilized cells of Pseudomonas rhodesiae CIP107491. Appl Microbiol Biotechnol. 2003;60(5):534–540.
  • Patel TN, Park AHA, Banta S. Genetic manipulation of outer membrane permeability: generating porous heterogeneous catalyst analogs in Escherichia coli. ACS Synth Biol. 2014;3(12):848–854.
  • Ni Y, Mao Z, Chen RR. Outer membrane mutation effects on UDP-glucose permeability and whole-cell catalysis rate. Appl Microbiol Biotechnol. 2006;73(2):384–393.
  • Ni Y, Chen RR. Accelerating whole-cell biocatalysis by reducing outer membrane permeability barrier. Biotechnol Bioeng. 2004;87(6):804–811.