1,905
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Genome-wide identification, phylogeny, and expression analysis of the CA gene family in tomato

ORCID Icon, , , , , , & show all
Pages 70-83 | Received 19 Sep 2019, Accepted 09 Jan 2020, Published online: 23 Jan 2020

References

  • Frommer WB. CO2mmon sense. Science 2010;327(5963):275–276.
  • Smith KS, Ferry JG. Prokaryotic carbonic anhydrases. FEMS Microbiol Rev. 2000;24(4):335–366.
  • Fabre N, Reiter IM, Becuwe-Linka N, et al. Characterization and expression analysis of genes encoding α and β carbonic anhydrases in Arabidopsis. Plant Cell Environ. 2007;30:617–629.
  • Tiwari A, Kumar P, Singh S, et al. Carbonic anhydrase in relation to higher plants. Photosynthetica 2005;43(1):1–11.
  • Dąbrowska-Bronk J, Komar DN, Rusaczonek A, et al. β-carbonic anhydrases and carbonic ions uptake positively influence Arabidopsis photosynthesis, oxidative stress tolerance and growth in light dependent manner. J Plant Physiol. 2016;203:44–54.
  • Ignatova L, Rudenko N, Zhurikova E, et al. Carbonic anhydrases in photosynthesizing cells of C3 higher plants. Metabolites 2019;9(4):73.
  • Hewett-Emmett D, Tashian RE. Functional diversity, conservation, and convergence in the evolution of the α-, β-, and γ-carbonic anhydrase gene families. Mol Phylogenet Evol. 1996;5(1):50–77.
  • Tripp BC, Smith K, Ferry JG. Carbonic anhydrase: new insights for an ancient enzyme. J Biol Chem. 2001;276(52):48615–48618.
  • Burén S, Ortega-Villasante C, Blanco-Rivero A, et al. Importance of post-translational modifications for functionality of a chloroplast-localized carbonic anhydrase (CAH1) in Arabidopsis thaliana. PLoS One 2011;6(6):e21021.
  • Villarejo A, Burén S, Larsson S, et al. Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol. 2005;7(12):1224.
  • Van K, Spalding MH. Periplasmic carbonic anhydrase structural gene (Cah1) mutant in Chlamydomonas reinhardtii. Plant Physiol. 1999;120(3):757–764.
  • Sun Q, Zybailov B, Majeran W, et al. PPDB, the plant proteomics database at Cornell. Nucleic Acids Res. 2009;37(suppl_1):D969–D974.
  • Zhurikova E, Ignatova L, Semenova G, et al. Effect of knockout of α-carbonic anhydrase 4 gene on photosynthetic characteristics and starch accumulation in leaves of Arabidopsis thaliana. Russ J Plant Physiol. 2015;62(4):564–569.
  • Mitra M, Lato SM, Ynalvez RA, et al. Identification of a new chloroplast carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol. 2004;135(1):173–182.
  • Ludwig M. Evolution of carbonic anhydrase in C4 plants. Curr Opin Plant Biol. 2016;31:16–22.
  • Hu H, Rappel W-J, Occhipinti R, et al. Distinct cellular locations of carbonic anhydrases mediate carbon dioxide control of stomatal movements. Plant Physiol. 2015;169(2):1168–1178.
  • Hu H, Boisson-Dernier A, Israelsson-Nordström M, et al. Carbonic anhydrases are upstream regulators of CO 2-controlled stomatal movements in guard cells. Nat Cell Biol. 2010;12(1):87–93.
  • Sunderhaus S, Dudkina NV, Jänsch L, et al. Carbonic anhydrase subunits form a matrix-exposed domain attached to the membrane arm of mitochondrial complex I in plants. J Biol Chem. 2006;281(10):6482–6488.
  • Soto D, Córdoba JP, Villarreal F, et al. Functional characterization of mutants affected in the carbonic anhydrase domain of the respiratory complex I in Arabidopsis thaliana. Plant J. 2015;83(5):831–844.
  • Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39(suppl):W29–W37.
  • El-Gebali S, Mistry J, Bateman A, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47(D1):D427–D432.
  • Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018;46(D1):D493–D496.
  • Chen C, Xia R, Chen H, et al. TBtools, a Toolkit for Biologists integrating various biological data handling tools with a user-friendly interface. BioRxiv 2018.
  • Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7(1):539–511.
  • McWilliam H, Li W, Uludag M, et al. Analysis tool web services from the EMBL-EBI. Nucleic Acids Res. 2013;41(W1):W597–W600.
  • Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Bioinformatics 1992;8(3):275–282.
  • Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–1549.
  • Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science 2000;290(5494):1151–1155.
  • Xu G, Guo C, Shan H, et al. Divergence of duplicate genes in exon–intron structure. Proc Natl Acad Sci USA 2012;109(4):1187–1192.
  • Lescot M, Déhais P, Thijs G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002;30(1):325–327.
  • Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63. https://doi.org/10.1038/nrg2484
  • Sage RF. The evolution of C4 photosynthesis. New Phytol. 2004;161(2):341–370.
  • Sage RF, Sage TL, Kocacinar F. Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol. 2012;63(1):19–47.
  • Kachru RB, Anderson LE. Chloroplast and cytoplasmic enzymes. Planta 1974;118(3):235–240.
  • Ku S, Edwards G. Photosynthesis in mesophyll protoplasts and bundle sheath cells of various types of C4 plants. IV. Enzymes of kespiratory metabolism and energy utilizing enzymes of photosynthetic pathways. Z Pflanzenphysiol. 1975;77(1):16–32.
  • Knapp S, Bohs L, Nee M, et al. Solanaceae—a model for linking genomics with biodiversity. Int J Genom. 2004;5:285–291.
  • Menda N, Strickler SR, Mueller LA. Advances in tomato research in the post-genome era. Plant Biotechnol. 2013;30(3):243–256.
  • Yu S, Zhang X, Guan Q, et al. Expression of a carbonic anhydrase gene is induced by environmental stresses in rice (Oryza sativa L.). Biotechnol Lett. 2006;29(1):89–94.
  • Slaymaker DH, Navarre DA, Clark D, et al. The tobacco salicylic acid-binding protein 3 (SABP3) is the chloroplast carbonic anhydrase, which exhibits antioxidant activity and plays a role in the hypersensitive defense response. Proc Natl Acad Sci USA 2002;99(18):11640–11645.
  • Wang Y-Q, Feechan A, Yun B-W, et al. S-nitrosylation of AtSABP3 antagonizes the expression of plant immunity. J Biol Chem. 2009;284(4):2131–2137.