1,242
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Identification and characterization of NAC genes in response to abiotic stress conditions in Picea wilsonii using transcriptome sequencing

, , , &
Pages 93-103 | Received 19 Aug 2019, Accepted 15 Jan 2020, Published online: 29 Jan 2020

References

  • Adam E, Kozma-Bognar L, Kolar C, et al. The tissue-specific expression of a tobacco phytochrome B gene. Plant Physiol. 1996;110(4):1081–1088.
  • Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 2003;10(6):239–247.
  • Lu PL, Chen NZ, An R, et al. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol. 2007;63(2):289–305.
  • Kim SG, Kim SY, Park CM. A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 2007;226(3):647–654.
  • Jeong JS, Kim YS, Baek KH, et al. Root-specific expression of OSNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol. 2010;153(1):185–197.
  • Hao YJ, Wei W, Song QX, et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J. 2011;68(2):302–313.
  • Shao H, Wang H, Tang X. Nac transcription factors in plant multiple abiotic stress responses: progress and prospects. Front Plant Sci. 2015;6:902.
  • Nakashima K, Takasaki H, Mizoi J, et al. Nac transcription factors in plant abiotic stress responses. Biochim Biophys Acta. 2012;1819(2):97–103.
  • Puranik S, Sahu PP, Srivastava PS, et al. Nac proteins: regulation and role in stress tolerance. Trends Plant Sci. 2012;17(6):369–381.
  • Le DT, Nishiyama R, Watanabe Y, et al. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res. 2011;18(4):263–276.
  • Hu H, Dai M, Yao J, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA. 2006;103(35):12987–12992.
  • Rushton PJ, Bokowiec MT, Han S, et al. Tobacco transcription factors: novel insights into transcriptional regulation in the Solanaceae. Plant Physiol. 2008;147(1):280–295.
  • Pascual MB, Canovas FM, Avila C. The NAC transcription factor family in maritime pine (Pinus pinaster): molecular regulation of two genes involved in stress responses. BMC Plant Biol. 2015;15(1):254.
  • Yoon HK, Kim SG, Kim SY, et al. Regulation of leaf senescence by NTL9-mediated osmotic stress signaling in Arabidopsis. Mol Cells 2008;25(3):438–445.
  • Liu QL, Xu KD, Zhao LJ, et al. Overexpression of a novel chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco. Biotechnol Lett. 2011;33(10):2073–2082.
  • Zhang XM, Cheng ZH, Zhao K, et al. Functional characterization of poplar NAC13 gene in salt tolerance. Plant Sci. 2019;281:1–8.
  • Tang Y, Liu M, Gao S, et al. Molecular characterization of novel TaNAC genes in wheat and overexpression of TaNAC2a confers drought tolerance in tobacco. Physiol Plant. 2012;144(3):210–224.
  • Hu P, Zhang KM, Yang CP. BpNAC012 positively regulates abiotic stress responses and secondary wall biosynthesis. Plant Physiol. 2019;179(2):700–717.
  • He L, Shi X, Wang Y, et al. Arabidopsis ANAC069 binds to C[A/G]CG[T/G] sequences to negatively regulate salt and osmotic stress tolerance. Plant Mol Biol. 2017;93(4–5):369–387.
  • Zhang H, Cui X, Guo Y, et al. Picea wilsonii transcription factor NAC2 enhanced plant tolerance to abiotic stress and participated in RFCP1-regulated flowering time. Plant Mol Biol. 2018;98(6):471–493.
  • Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant cell. 1994;6:251–264.
  • Li L, Yu Y, Wei J, et al. Homologous HAP5 subunit from Picea wilsonii improved tolerance to salt and decreased sensitivity to ABA in transformed Arabidopsis. Planta 2013;238(2):345–356.
  • Lu M, Sun QP, Zhang DF, et al. Identification of 7 stress-related NAC transcription factor members in maize (Zea mays L.) and characterization of the expression pattern of these genes. Biochem Biophys Res Commun. 2015;462(2):144–150.
  • Zhang T, Zhang D, Liu Y, et al. Overexpression of a NF-YB3 transcription factor from Picea wilsonii confers tolerance to salinity and drought stress in transformed Arabidopsis thaliana. Plant Physiol Biochem. 2015;94:153–164.
  • Ma NN, Zuo YQ, Liang XQ, et al. The multiple stress-responsive transcription factor SLNAC1 improves the chilling tolerance of tomato. Physiol Plantarum. 2013;149(4):474–486.
  • Song SY, Chen Y, Chen J, et al. Physiological mechanisms underlying OSNAC5-dependent tolerance of rice plants to abiotic stress. Planta 2011;234(2):331–345.
  • Zhang T, Li YF, Zhou YN, et al. Cloning and expression analysis of a homologous expansin gene EXP2 in Picea wilsonii. J For Res. 2016;27(2):247–255.
  • Grabherr MG, Haas BJ, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–652.
  • Altschul SF, Madden TL, Schaffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–3402.
  • Deng Y, Li J, Wu S. Integrated nr database in protein annotation system and its localization. Comput Engin. 2006;32:71–74.
  • Apweiler R, Bairoch A, Wu CH, et al. Uniprot: the universal protein knowledgebase. Nucleic Acids Res. 2004;32(Database issue):D115–D119.
  • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25(1):25–29.
  • Tatusov RL, Galperin MY, Natale DA, et al. The cog database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28(1):33–36.
  • Koonin EV, Fedorova ND, Jackson JD, et al. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol. 2004;5(2):R7.
  • Kanehisa M, Goto S, Kawashima S, et al. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32(Database issue):D277–D280.
  • Eddy SR. Profile hidden markov models. Bioinformatics 1998;14(9):755–763.
  • Finn RD, Bateman A, Clements J, et al. Pfam: the protein families database. Nucl Acids Res. 2014;42(D1):D222–D230.
  • Yu Y, Li Y, Huang G, et al. PwHAP5, a CCAAT-binding transcription factor, interacts with PwFKBP12 and plays a role in pollen tube growth orientation in Picea wilsonii. J Exp Bot. 2011;62(14):4805–4817.
  • Czechowski T, Stitt M, Altmann T, et al. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005;139(1):5–17.
  • Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–1108.
  • Tran LS, Nakashima K, Sakuma Y, et al. Isolation and functional analysis of arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell. 2004;16(9):2481–2498.
  • Fujita M, Fujita Y, Maruyama K, et al. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 2004;39(6):863–876.
  • Doornbos RF, Geraats BP, Kuramae EE, et al. Effects of jasmonic acid, ethylene, and salicylic acid signaling on the rhizosphere bacterial community of Arabidopsis thaliana. MPMI. 2011;24(4):395–407.