3,631
Views
26
CrossRef citations to date
0
Altmetric
Review

The 21st century revival of chitosan in service to bio-organic chemistry

, , &
Pages 221-237 | Received 10 Oct 2019, Accepted 13 Feb 2020, Published online: 24 Feb 2020

References

  • Serce S, Ercisli S, Sengul M, et al. Antioxidant activities and fatty acid composition of wild grown myrtle (Myrtus communis L.) fruits. Phcog Mag. 2010;6(21):9–12.
  • Ozdemir F, Nadeem HS, Akdogan A, et al. Effect of altitude, shooting period, and tea grade on the catechins, caffeine, theaflavin, and thearubigin of Turkish black tea. Turk J Agric For. 2018;42:334–340.
  • Senkal BC, Uskutoglu T, Cesur C, et al. Determination of essential oil components, mineral matter, and heavy metal content of Salvia virgata Jacq. grown in culture conditions. Turk J Agric For. 2019;43:395–404.
  • Kingston DG. Modern natural products drug discovery and its relevance to biodiversity conservation. J Nat Prod. 2011;74(3):496–511.
  • Chien RC, Yen MT, Mau JL. Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells. Carbohydr Polym. 2016;138:259–264.
  • Domínguez-Delgado CL, Fuentes-Prado E, Escobar Chávez JJ, et al. Chitosan and Pluronic® F-127: pharmaceutical applications. In: Mishra M, editor. Encyclopedia of biomedical polymers and polymeric biomaterials. New York (NY): Taylor and Francis; 2016. p. 1513–1535.
  • Zhang H, Zhao Y. Preparation, characterization and evaluation of tea polyphenole Zn complex loaded β-chitosan nanoparticles. Food Hydrocolloids. 2015;48:260–273.
  • Cabral BRP, de Oliveira PM, Gelfuso GM, et al. Improving stability of antioxidant compounds from Plinia cauliflora (jabuticaba) fruit peel extract by encapsulation in chitosan microparticles. J. Food Eng. 2018;238:195–201.
  • Baspinar Y, Üstündas M, Bayraktar O, et al. Curcumin and piperine loaded zein-chitosan nanoparticles: Development and in-vitro characterization. Saudi Pharm J. 2018;26(3):323–334.
  • Hosseini SF, Zandi M, Rezaei M, et al. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydr Polym. 2013;95(1):50–56.
  • Carlan IC, Estevinho BN, Rocha F. Study of microencapsulation and controlled release of modified chitosan microparticles containing vitamin B12. Powder Technol. 2017;318:162–169.
  • Martin-Saldaña S, Chevalier MT, Iglesias MJ, et al. Salicylic acid loaded chitosan microparticles applied to lettuce seedlings: Recycling shrimp fishing industry waste. Carbohyd Polym. 2018;200:321–331.
  • Hussain MR, Iman M, Maji TK. Determination of degree of deacetylation of chitosan and their effect on the release behavior of essential oil from chitosan and chitosan-gelatin complex microcapsules. Int J of Adv Eng Appl. 2013;2(4):4–12.
  • Harris R, Lecumberri E, Mateos-Aparicio I, et al. Chitosan nanoparticles and microspheres for the encapsulation of natural antioxidants extracted from Ilex paraguariensis. Carbohydr Polym. 2011;84(2):803–806.
  • Paini M, Aliakbarian B, Casazza AA, et al. Chitosan/dextran multilayer microcapsules for polyphenol co-delivery. Materials Sci. Eng. C.2015;46:374–380.
  • Saranya TS, Rajan VK, Biswas R, et al. Synthesis, characterisation and biomedical applications of curcumin conjugated chitosan microspheres. Int J Biol Macromol. 2018;110:227–233.
  • Patel KS, Patel MB. Preparation and evaluation of chitosan microspheres containing nicorandil. Int J Pharma Investig. 2014;4(1):32–37.
  • Sharma M, Pk C, Kumar Dev S. Formulation and in-vitro/in-vivo evaluation of alginate-chitosan microspheres of glipizide by ionic gelation method. Asian J Pharm Clin Res. 2017;10(7):385–390.
  • Cui X, Guan X, Zhong S, et al. Multi-stimuli responsive smart chitosan-based microcapsules for targeted drug delivery and triggered drug release. Ultrason Sonochem. 2017;38:145–153.
  • Chatterjee S, Tran HN, Godfred OB, et al. Supersorption capacity of anionic dye by newer chitosan hydrogel capsules via green surfactant exchange method. ACS Sustainable Chem Eng. 2018;6(3):3604–3614.
  • Simeonov E, Yaneva Z, Chilev C. Kinetics of green solid-liquid extraction of useful compounds from plant materials - kinetics coefficients and modelling. Green Process Synth. 2018;7(1):68–73.
  • Yaneva Z, Georgieva NV, Bekirska LL, Lavrova S. Drug mass transfer mechanism, thermodynamics, and in vitro release kinetics of antioxidant-encapsulated zeolite microparticles as a drug carrier system. CABEQ. 2018;32(3):281–298.
  • Simeonov E, Yaneva Z, Chilev C. Investigation of the mechanism and kinetics of extraction from plant materials. Bulgarian Chem Commun. 2017;49(2):399–409.
  • Hussain SA, Hameed A, Nazir Y, et al. Microencapsulation and the characterization of polyherbal formulation (PHF) rich in natural polyphenolic compounds. Nutrients. 2018;10(7):843–867.
  • Intini C, Elviri L, Cabral J, et al. 3D-printed chitosan-based scaffolds: an in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats. Carbohydr Polym. 2018;199:593–602.
  • Rodríguez-Vázquez M, Vega-Ruiz B, Ramos-Zúñiga R, et al. Chitosan and its potential use as a scaffold for tissue engineering in regenerative medicine. Biomed Res Int. 2015;2015:1–15.
  • Bellich B, D’Agostino I, Semeraro S, et al. “The Good, the Bad and the Ugly” of chitosans. Mar Drugs. 2016;14(99):1–31.
  • Mittala H, Raya SS, Kaith BS, et al. Recent progress in the structural modification of chitosan for applications in diversified biomedical fields. Eur Polym J. 2018;109:402–434.
  • de Moura CM, de Moura JM, Soares NM, et al. Evaluation of molar weight and deacetylation degree of chitosan during chitin deacetylation reaction: Used to produce biofilm. Chem Eng Process. 2011;50(4):351–355.
  • Rangel-Vazquez NA, Felix FR. Computational chemistry applied in the analyses of chitosan/polyvinylpyrrolidone/mimosa tenuiflora. 1st ed. New York (NY): Science Publishing Group; 2014. ISBN: 978-1-940366-00-5.
  • Akakuru OU, Louis H, Amos PI, et al. The chemistry of chitin and chitosan justifying their nanomedical utilities. Biochem Pharmacol (Los Angel). 2018;7:1–6.
  • Sharif R, Mujtaba M, Rahman MU, et al. The multifunctional role of chitosan in horticultural crops. Molecules. 2018;23(4):872–892.
  • Cunha RA, Soares TA, Rusu VH, et al. The Molecular Structure and Conformational Dynamics of Chitosan Polymers: An Integrated Perspective from Experiments and Computational Simulations. In: Karunaratne DN, editor. The complex world of polysaccharides. London, UK: InTech; 2012. Chapter 9.
  • Yang R, Liu Y, Gao Y, et al. Nano-encapsulation of epigallocatechin gallate in the ferritin-chitosan double shells: Simulated digestion and absorption evaluation. Food Res Int. 2018;108:1–7.
  • Liˇsková J, Douglas TEL, Beranová J, et al. Chitosan hydrogels enriched with polyphenols: antibacterial activity, cell adhesion and growth and mineralization. Carbohydr Polym. 2015;129:135–142.
  • Casanova F, Estevinho BN, Santos L. Preliminary studies of rosmarinic acid microencapsulation with chitosan and modified chitosan for topical delivery. Powder Technol. 2016;297:44–49.
  • Ye J, Wang S, Lan W, et al. Preparation and properties of polylactic acid-tea polyphenol-chitosan composite membranes. Int J Biol Macromol. 2018;117:632–639.
  • Liu Y, Wang S, Lan W, et al. Development of ultrasound treated polyvinyl alcohol/tea polyphenol composite films and their physicochemical properties. Ultrason Sonochem. 2019;51:386–394.
  • Kumaraswamy RV, Kumari S, Choudhary RC, et al. Salicylic acid functionalized chitosan nanoparticle: a sustainable biostimulant for plant. Int J Biol Macromol. 2019;123:59–69.
  • Karamalakova Y, Nikolova G, Adhikari M, et al. Oxidative-protective effects of Tinospora cordifolia extract on plasma and spleen cells after experimental ochratoxicosis. Comp Clin Pathol. 2018;27(6):1487–1495.
  • Pulicharla R, Marques C, Das RK, et al. Encapsulation and release studies of strawberry polyphenols in biodegradable chitosan nanoformulation. Int J Biol Macromol. 2016;88:171–178.
  • Trifković KT, Milašinović NZ, Djordjević VB, et al. Chitosan microbeads for encapsulation of thyme (Thymus serpyllum L.) polyphenols. Carbohydr Polym. 2014;111:901–907.
  • Liu F, Antoniou J, Li Y, et al. Chitosan/sulfobutylether-b-cyclodextrin nanoparticles as a potential approach for tea polyphenol encapsulation. Food Hydrocolloids. 2016;57:291–300.
  • Yan L, Wang R, Wang H, et al. Formulation and characterization of chitosan hydrochloride and carboxymethyl chitosan encapsulated quercetin nanoparticles for controlled applications in foods system and simulated gastrointestinal condition. Food Hydrocolloids. 2018;84:450–457.
  • Zhang H, Fu Y, Niu F, et al. Enhanced antioxidant activity and in vitro release of propolis by acid induced aggregation using heat-denatured zein and carboxymethyl chitosan. Food Hydrocolloids. 2018;81:104–112.
  • Chanphai P, Tajmir-Riahi HA. Probing the binding of resveratrol, genistein and curcumin with chitosan nanoparticles. J Mol Liq. 2017;243:108–114.
  • Czechowska-Biskup R, Jarosińska D, Rokita B, et al. Determination of degree of deacetylation of chitosan – comparison of methods. Prog Chem Appl Chitin Deriv. 2012;17:5–20.
  • Aranaz I, Mengíbar M, Harris R, et al. Functional characterization of chitin and chitosan. Current Chem Biol. 2009;3:203–230.
  • Foster LJR, Ho S, Hook J, et al. Chitosan as a biomaterial: influence of degree of deacetylation on its physiochemical, material and biological properties. PLoS One. 2015;10(8):e0135153.
  • Domínguez-Delgado CL, Rodríguez-Cruz IM, Fuentes-Prado E, et al. Drug carrier systems using chitosan for non parenteral routes. In: Gowder SJT, editor. Pharmacology and therapeutics. London, UK: InTech; 2014. Chapter 10.
  • Sogias IA, Khutoryanskiy VV, Williams AC. Exploring the factors affecting the solubility of chitosan in water. Macromol Chem Phys. 2010;211(4):426–433.
  • Tachaboonyakiat W, Netswasdi N, Srakaew V, et al. Elimination of inter- and intramolecular crosslinks of phosphorylated chitosan by sodium salt formation. Polym J. 2010;42(2):148–156.
  • Fu Y, Xiao C. A facile physical approach to make chitosan soluble in acid-free water. Int J Biol Macromol. 2017;103:575–580.
  • Chae SY, Jang MK, Nah JW. Influence of molecular weight on oral absorption of water soluble chitosans. J Control Release. 2005;102(2):383–394.
  • Aslan B, Han HD, Lopez-Berestein G, et al. Chitosan nanoparticles. In: Bhushan B, editor. Encyclopedia of nanotechnology. Dordrecht: Springer; 2016.
  • Shishir MRI, Xie L, Sun C, et al. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci Technol. 2018;78:34–60.
  • Perez JJ, Francois NJ, Maroniche GA, et al. A novel, green, low-cost chitosan-starch hydrogel as potential delivery system for plant growth-promoting bacteria. Carbohydr Polym. 2018;202:409–417.
  • Chang CT, Lin YL, Lu SW, et al. Characterization of a chitosanase from jelly fig (Ficus awkeotsang Makino) latex and its application in the production of water-soluble low molecular weight chitosans. PLoS One. 2016;11(3):e0150490. doi: 10.1371/journal.pone.0150490
  • Kumaraswamy RV, Kumari S, Choudhary RC, et al. Engineered chitosan based nanomaterials: bioactivities, mechanisms and perspectives in plant protection and growth. Int J Biol Macromol. 2018;113:494–506.
  • Shariatinia Z. Pharmaceutical applications of chitosan. Adv Colloid Interface Sci. 2019;263:131–194.
  • Pakdel PM, Peighambardoust SJ. Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydr Polym. 2018;201:264–279.
  • de Araújo Braz EM, Costa de Silva SCC, da Silva DA, et al. Modified chitosan-based bioactive material for antimicrobial application: synthesis and characterization. Int J Biol Macromol. 2018;117(1):640–647.
  • Saekhor K, Udomsinprasert W, Honsawek S, et al. Preparation of an injectable modified chitosan-based hydrogel approaching for bone tissue engineering. Int J Biol Macromol. 2019;123:167–173.
  • Olad A, Bakht H, Hagh K. Graphene oxide and amin-modified graphene oxide incorporated chitosan gelatin scaffolds as promising materials for tissue engineering. Composites Part B. 2019;162:692–702.
  • Jaiswal S, Dutta PK, Kumar S, et al. Methyl methacrylate modified chitosan: synthesis, characterization and application in drug and gene delivery. Carbohydr Polym. 2019;211:109–117.
  • Cheah WY, Show P, Ng I, et al. Antibacterial activity of quaternized chitosan modified nanofiber membrane. Int J Biol Macromol. 2019;126:569–577.
  • Tripathi N, Choppala G, Singh RS. Evaluation of modified chitosan for remediation of zinc contaminated soils. J Geochem Explor. 2017;182:180–184.
  • Shankar A, Kongot M, Saini VK, et al. Removal of pentachlorophenol pesticide from aqueous solutions using modified chitosan. Arabian J Chem. 2018;13:1821–1830.
  • Kumar S, Deepak V, Kumari M, et al. Antibacterial activity of diisocyanate-modified chitosan for biomedical applications. Int J Biol Macromol. 2016;84:349–353.
  • Saba MW, Elzanaty AM, Abdel-Gawad OF, et al. Synthesis, characterization and antimicrobial activity of Schiff bases modified chitosan-graft-poly(acrylonitrile). Int J Biol Macromol. 2018;109:1280–1291.
  • Tyliszczak B, Drabczyk A, Kudłacik-Kramarczyk S, et al. Preparation and cytotoxicity of chitosan-based hydrogels modified with silver nanoparticles. Colloids Surf B Biointerfaces. 2017;160:325–330.
  • Elsayed NH, Monier M, Youssef I. Fabrication of photo-active trans-3-(4-pyridyl)acrylic acid modified chitosan. Carbohydr Polym. 2017;172:1–10.
  • Fang Z, Lin D, Warner RD, et al. Effect of gallic acid/chitosan coating on fresh pork quality in modified atmosphere packaging. Food Chem. 2018;260:90–96.
  • Kumar D, Pandey J, Kumar P. Synthesis and characterization of modified chitosan via microwave route for novel antibacterial application. Int J Biol Macromol. 2018;107:1388–1394.
  • Fan Z, Qin Y, Liu S, et al. Synthesis, characterization, and antifungal evaluation of diethoxyphosphoryl polyaminoethyl chitosan derivatives. Carbohydr Polym. 2018;190:1–11.
  • Liang W, Yu A, Wang G, et al. A novel water-based chitosan-La pesticide nanocarrier enhancing defense responses in rice (Oryza sativa L) growth. Carbohydr Polym. 2018;199:437–444.
  • Mohapatra A, McGraw G, Morshed BI, et al. Electric stimulus response of chitosan microbeads embedded with magnetic nanoparticles for controlled drug delivery. 2014 IEEE Healthcare Innovation Conference (HIC), Seattle, WA.
  • Balcerzak J, Mucha M. Method for preparation of hybrid spherical chitosan/poly(lactic acid) structures. Prog Chem Appl Chitin Deriv. 2008;13:57–64.
  • Mohapatra A, Harris MA, LeVine D, et al. Magnetic stimulus responsive vancomycin drug delivery system based on chitosan microbeads embedded with magnetic nanoparticles. J Biomed Mater Res. 2018;106(6):2169–2176.
  • Nnamonu LA, Sha’Ato R, Onyido I. Alginate reinforced chitosan and starch beads in slow release formulation of imazaquin herbicide - preparation and pharacterization. MSA. 2012;3:566–574.
  • Akolade JO, Oyelola H, Oloyede B. Encapsulation in chitosan-based polyelectrolyte complexes enhances antidiabetic activity of curcumin. J Funct Foods. 2017;35:584–594.
  • Liang J, Yan H, Puligundla P, et al. Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: a review. Food Hydrocoll. 2017;69:286–292.
  • Wang W, Jung J, Zhao Y. Chitosan-cellulose nanocrystal microencapsulation to improve encapsulation efficiency and stability of entrapped fruit anthocyanins. Carbohydr Polym. 2017;157:1246–1253.
  • Belščak-Cvitanović A, Stojanović R, Manojlović V, et al. Encapsulation of polyphenolic antioxidants from medicinal plant extracts in alginate–chitosan system enhanced with ascorbic acid by electrostatic extrusion. Food Res Int. 2011;44(4):1094–1101.
  • Udeni Gunathilake TMS, Ching YC, Chuah CH, et al. Influence of a nonionic surfactant on curcumin delivery of nanocellulose reinforced chitosan hydrogel. Int J Biol Macromol. 2018;118:1055–1064.
  • Mohapatra А, Sahadat N, Morshed BI, et al. Stimuli-controlled drug delivery system development with implantable biocompatible chitosan microbeads. Proceedings of the 2014 IAJC-ISAM International Conference, Orlando, FL; 2014
  • Dias AMA, Cortez AR, Barsan MM, et al. Development of greener multi-responsive chitosan biomaterials doped with biocompatible ammonium ionic liquids. ACS Sustainable Chem Eng. 2013;1(11):1480–1492.
  • Moreno MA, Gómez-Mascaraque LG, Arias M, et al. Electrosprayed chitosan microcapsules as delivery vehicles for vaginal phytoformulations. Carbohydr Polym. 2018;201:425–437.
  • Rojas J, Ciro Y, Zapata S. Chitosan as a potential microencapsulation carrier for ascorbic acid stabilization in heterodisperse systems. Int J Pharm Pharm Sci. 2015;7(1):69–72.
  • Rubilar JF, Cruz RMS, Zuñiga RN, et al. Mathematical modeling of gallic acid release from chitosan films with grape seed extract and carvacrol. Int J Biol Macromol. 2017;104:197–203.
  • Abdelkader H, Hussain SA, Abdullah N, et al. Review on micro-encapsulation with chitosan for pharmaceuticals applications. MOJCRR. 2018;1(2):77–84.
  • Wang L-Y, Gu Y-H, Zhou Q-Z, et al. Preparation and characterization of uniform-sized chitosan microspheres containing insulin by membrane emulsification and a two-step solidification process. Colloids Surf B Biointerfaces. 2006;50(2):126–135.,
  • Manjann KM, Shivakumar B, Pramod Kumar TM. Microencapsulation: An аcclaimed novel drug-delivery system for NSAIDs in arthritis. Crit Rev Ther Drug Carrier Syst. 2010;27(6):501–532.
  • Ibrahim HM, Ali EHA, Sabry HA. Haloperidol-loaded chitosan nanocomposites improve liver and kidney functions and lipid profile of male rats. Res J Pharm Biol Chem Sci. 2017;8(3):1135–1145.
  • Sacco P, Paoletti S, Cok M, et al. Insight into the ionotropic gelation of chitosan using tripolyphosphate and pyrophosphate as cross-linkers. Int J Biol Macromol. 2016;92:476–483.
  • Ahmed TA, Aljaeid BM. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des Devel Ther. 2016;10:483–507.
  • Yaneva Z, Georgieva N. Study on the physical chemistry, equilibrium, and kinetic mechanism of azure a biosorption by zea mays biomass. J Disp Sci Technol. 2014;35(2):193–204.
  • Agarwal S, Rajoria P, Rani A. Adsorption of tannic acid from aqueous solution onto chitosan/NaOH/fly ash composites: equilibrium, kinetics, thermodynamics and modeling. J Environ Chem Eng. 2018;6(1):1486–1499.
  • Shetta A, Kegere J, Mamdouh W. Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: Encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. Int J Biol Macromol. 2019;126:731–742.
  • Tagaç AA, Sarp Ö, Yurdakoç K. Controlled release of Vitamin C from chitosan nanoparticles. HJBC. 2018;46(1):69–77.
  • Liang J, Yan H, Yang H, et al. Synthesis and controlled-release properties of chitosan/β-Lactoglobulin nanoparticles as carriers for oral administration of epigallocatechin gallate. Food Sci Biotechnol. 2016;25(6):1583–1590.
  • Vanden Braber NL, Paredes AJ, Rossi YE, et al. Controlled release and antioxidant activity of chitosan or its glucosamine water-soluble derivative microcapsules loaded with quercetin. Int J Biol Macromol 2018;112:399–404.
  • Lee JH, Yeo Y. Controlled drug release from pharmaceutical nanocarriers. Chem Eng Sci. 2015;125:75–84.
  • Kamaly N, Yameen B, Wu J, et al. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem Rev. 2016;116(4):2602–2663.
  • Son G, Lee B, Cho C. Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. J Pharm Investig. 2017;47(4):287–296.
  • Uhrich KE, Cannizzaro SM, Langer RS, et al. Polymeric systems for controlled drug release. Chem Rev. 1999;99(11):3181–3198.
  • Marin E, Briceno MI, Caballero-George C. Critical evaluation of biodegradable polymers used in nanodrugs. Int J Nanomed. 2013;8:3071–3090.
  • Park H, Park K, Shalaby W. Biodegradable hydrogels for drug delivery. 1st ed. Florida, USA: CRC Press; 1993.
  • Lucio D, Martínez-Ohárriz MC. Chitosan: strategies to increase and modulate drug release rate. In: Shalaby E, editor. Biological activities and application of marine polysaccharides. London, UK: InTech;2017. Chapter 6.
  • Ruiz-Caro R, Veiga-Ochoa MD. Characterization and dissolution study of chitosan freeze-dried systems for drug controlled release. Molecules. 2009;14(11):4370–4386.
  • Nimesh S. Gene therapy: potential applications of nanotechnology, 2. Methods of nanoparticle preparation. 1st ed. Cambridge, UK: Woodhead Publishing Series in Biomedicine; 2013. p. 13–42.
  • Hasheminejad N, Khodaiyan F, Safari M. Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chem. 2019;275:113–122.
  • Ren X, Hou T, Liang Q, et al. Effects of frequency ultrasound on the properties of zein-chitosan complex coacervation for resveratrol encapsulation. Food Chem. 2019;279:223–230.
  • Mania S, Tylingo R, Michałowska A. The drop-in-drop encapsulation in chitosan and sodium alginate as a method of prolonging the quality of linseed oil. Polymers. 2018;10(12):1355–1371.
  • Jamil B, Abbasi R, Abbasi S, et al. Encapsulation of cardamom essential oil in chitosan nano-composites: In-vitro efficacy on antibiotic-resistant bacterial pathogens and cytotoxicity studies. Front Microbiol. 2016;7(1580):1–10.
  • Janssens B. Encapsulation of vitamin D3 and vitamin K2 in chitosan coated liposomes [MSc thesis]. Ghent, Belgium: Faculty of Pharmaceutical Sciences, Universita Degli Studi Di Salerno, Ghent University, 2018. 1–42.
  • Hadiyanto MS, Majid D, Setyawan D, et al. Improvement of stability and antioxidant activities by using phycocyanin - chitosan encapsulation technique. IOP Conf Ser, Earth Environ Sci. 2017;55:1–7.
  • Drewnowska O, Turek B, Carstanjen B, et al. Chitosan – a promising biomaterial in veterinary medicine. Pol J Vet Sci. 2013;16(4):843–848.
  • ASTM F2103-01, Standard guide for characterization and testing of chitosan salts as starting materials intended for use in biomedical and tissue-engineered medical product applications. West Conshohocken, PA: ASTM International; 2001.
  • Dornish M, Kaplan DS, Arepalli SR. Regulatory status of chitosan and derivatives. In: Sarmento B, Neves JD, editors. Chitosan based systems for biopharmaceuticals. Delivery, targeting and polymer therapeutics. Chichester (UK): Wiley; 2012. Chapter 24.