2,126
Views
2
CrossRef citations to date
0
Altmetric
Research Article

New expression system to increase the yield of phloroglucinol

ORCID Icon, , , , &
Pages 405-412 | Received 03 Nov 2019, Accepted 28 Apr 2020, Published online: 13 May 2020

References

  • Singh IP, Sidana J, Bansal P, et al. Phloroglucinol compounds of therapeutic interest: global patent and technology status. Expert Opin Ther Pat. 2009;19(6):847–866.
  • Kastens ML, Kaplan JF. TNT into phloroglucinol. Ind Eng Chem. 1950;42(3):402–413.
  • Zhang R, Liu W, Cao Y, et al. An in vitro synthetic biosystem based on acetate for production of phloroglucinol. BMC Biotechnol. 2017;17(1):66.
  • Abdel-Ghany SE, Day I, Heuberger AL, et al. Production of phloroglucinol, a platform chemical, in Arabidopsis using a bacterial gene. Sci Rep. 2016;6(1):38483.
  • Achkar J, Xian M, Zhao H, et al. Biosynthesis of phloroglucinol. J Am Chem Soc. 2005; 127(15):5332–5333.
  • Zha W, Rubin-Pitel SB, Shao Z, et al. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab Eng. 2009;11(3):192–198.
  • Cao Y, Jiang X, Zhang R, et al. Improved phloroglucinol production by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol. 2011;91(6):1545–1552.
  • Choi YJ, Morel L, Le Franois T, et al. Novel, versatile, and tightly regulated expression system for Escherichia coli strains. Appl Environ Microbiol. 2010;76(15):5058–5066.
  • Seohyoung K, Seokjung C, Ramon G. Engineering Escherichia coli for the synthesis of short- and medium-chain α,β-unsaturated carboxylic acids. Metab Eng. 2016;36:90–98.
  • Kaczmarczyk A, Vorholt JA, Francez-Charlot A. Cumate-inducible gene expression system for sphingomonads and other Alphaproteobacteria. Appl Environ Microbiol. 2013;79(21):6795–6802.
  • Seo SO, Schmidt-Dannert C. Development of a synthetic cumate-inducible gene expression system for Bacillus. Appl Microbiol Biotechnol. 2019;103(1):303–313.
  • Shigehito I, Jef DB. New orthogonal transcriptional switches derived from tet repressor homologues for Saccharomyces cerevisiae regulated by 2,4-diacetylphloroglucinol and other ligands. ACS Synth Biol. 2017;6(3):497–506.
  • Cesareni G, Helmer-Citterich M, Castagnoli L. Control of ColE1 plasmid replication by antisense RNA. Trends Genet Tig. 1991;7(7):230–235.
  • Rao G, Lee JK, Zhao H. Directed evolution of phloroglucinol synthase PhlD with increased; stability for phloroglucinol production. Appl Microbiol Biotechnol. 2013;97(13):5861–5867.
  • Zha W, Rubin-Pitel S, Zhao H. Exploiting genetic diversity by directed evolution: molecular breeding of type III polyketide synthases improves productivity. Mol Biosyst. 2008;4(3):246–248.
  • Bubner B, Baldwin IT. Use of real-time PCR for determining copy number and zygosity in transgenic plants. Plant Cell Rep. 2004;23(5):263–271.
  • Sumby KM, Grbin PR, Jiranek V. Validation of the use of multiple internal control genes, and the application of real-time quantitative PCR, to study esterase gene expression in Oenococcus oeni. Appl Microbiol Biotechnol. 2012;96(4):1039–1047.
  • Bangera MG, Thomashow LS. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J Bacteriol. 1999;181(10):3155–3163.
  • Brunner M, Bujard H. Promoter recognition and promoter strength in the Escherichia-Coli system. EMBO J. 1987;6(10):3139–3144.
  • Kane JF, Hartley DL. Formation of recombinant protein inclusion-bodies in Escherichia-Coli. Trends Biotechnol. 1988;6(5):95–101.
  • Zhang R, Cao Y, Liu W, et al. Improving phloroglucinol tolerance and production in Escherichia coli by GroESL overexpression. Microb Cell Fact. 2017;16(1):227.
  • Singh SM, Panda AK. Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng. 2005;99(4):303–310.
  • Hou J, Zeng W, Zong Y, et al. Engineering the ultrasensitive transcription factors by fusing a modular oligomerization domain. ACS Synth Biol. 2018;7(5):1188–1194.
  • Claire MP, Hal SA. Expanding the chemical palette of industrial microbes: metabolic engineering for type III PKS-derived polyketides. Biotechnol J. 2019;14(1):e1700463.