1,167
Views
5
CrossRef citations to date
0
Altmetric
Article

Transcriptome sequencing and expression profiling of genes involved in daylily (Hemerocallis citrina Borani) flower development

, , , , & ORCID Icon
Pages 542-548 | Received 21 Jan 2020, Accepted 23 Jun 2020, Published online: 01 Jul 2020

References

  • Cui H, Zhang Y, Shi X, et al. The numerical classification and grading standards of daylily (Hemerocallis) flower color. Plos One. 2019;14(6):e0216460.
  • Hou F, Li S, Wang J, et al. Identification and validation of reference genes for quantitative real-time PCR studies in long yellow daylily, Hemerocallis citrina Borani. PLoS One. 2017;12(3):e0174933.
  • Wu W-T, Mong M-c, Yang Y-c, et al. Aqueous and ethanol etracts of daylily flower (Hemerocallis fulva L.) protect HUVE cells against high glucose. J Food Sci. 2018;83(5):1463–1469.
  • Zhang Y, Cichewicz RH, Nair MG. Lipid peroxidation inhibitory compounds from daylily (Hemerocallis fulva) leaves. Life Sci. 2004;75(6):753–763.
  • Rodriguez-Enriquez MJ, Grant-Downton RT. A new day dawning: Hemerocallis (daylily) as a future model organism. AoB Plants. 2013;5:pls055.
  • Bieleski RL, Reid MS. Physiological changes accompanying senescence in the ephemeral daylily flower. Plant Physiol. 1992;98(3):1042–1049.
  • Panavas T, Reid PD, Rubinstein B. Programmed cell death of daylily petals: Activities of wall-based enzymes and effects of heat shock. Plant Physiol Biochem. 1998;36(5):379–388.
  • Panavas T, Rubinstein B. Oxidative events during programmed cell death of daylily (Hemerocallis hybrid) petals. Plant Sci. 1998;133(2):125–138.
  • Nitta K, Yasumoto AA, Yahara T. Variation of flower opening and closing times in F1 and F2 hybrids of daylily (Hemerocallis fulva; Hemerocallidaceae) and nightlily (H. citrina). Am J Bot. 2010;97(2):261–267.
  • Hirota SK, Nitta K, Kim Y, et al. Relative role of flower color and scent on pollinator attraction: experimental tests using F1 and F2 hybrids of daylily and nightlily. PLoS One. 2012;7(6):e39010.
  • Shu Y, Li W, Zhao J, et al. Transcriptome sequencing and expression profiling of genes involved in the response to abiotic stress in Medicago ruthenica. Genet Mol Biol. 2018;41(3):638–648.
  • Luo D, Zhou Q, Wu Y, et al. Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.). BMC Plant Biol. 2019;19(1):32.
  • Haas BJ, Papanicolaou A, Yassour M, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8(8):1494–1512.
  • Davidson NM, Oshlack A. Corset: enabling differential gene expression analysis for de novo assembled transcriptomes. Genome Biol. 2014;15(7):410.
  • Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–3402.
  • Tatusov RL, Fedorova ND, Jackson JD, et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003 ;4:41.
  • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–29.
  • Jin J, Zhang H, Kong L, et al. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors. Nucleic Acids Res. 2014;42(D1):D1182–D1187.
  • Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–1111.
  • Trapnell C, Roberts A, Goff L, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7(3):562–578.
  • Alexa A, Rahnenfuhrer J. topGO: enrichment analysis for gene ontology. R package version 2.38.1. 2019.
  • Takahashi R, Benitez ER, Oyoo ME, et al. Nonsense mutation of an MYB transcription factor is associated with purple-blue flower color in soybean. J Hered. 2011;102(4):458–463.
  • Noda K, Glover BJ, Linstead P, et al. Flower colour intensity depends on specialized cell shape controlled by a Myb-related transcription factor. Nature. 1994;369(6482):661–664.
  • Liu J, Li J, Wang H, et al. Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments. J Exp Bot. 2011;62(2):825–840.
  • van Doorn WG, Woltering EJ. Senescence and programmed cell death: substance or semantics? J Exp Bot. 2004;55(406):2147–2153.
  • Van Hautegem T, Waters AJ, Goodrich J, et al. Only in dying, life: programmed cell death during plant development. Trends Plant Sci. 2015;20(2):102–113.
  • Stephenson P, Rubinstein B. Characterization of proteolytic activity during senescence in daylilies. Physiol Plant. 1998;104(3):463–473.
  • Panavas T, LeVangie R, Mistler J, et al. Activities of nucleases in senescing daylily petals. Plant Physiol Biochem. 2000;38(11):837–843.