4,356
Views
9
CrossRef citations to date
0
Altmetric
Article

Morphological alterations in gram-positive and gram-negative bacteria exposed to minimal inhibitory and bactericidal concentration of raw Malaysian stingless bee honey

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 575-586 | Received 12 Mar 2020, Accepted 23 Jun 2020, Published online: 07 Jul 2020

References

  • Se KW, Ibrahim RKR, Wahab RA, et al. Accurate evaluation of sugar contents in stingless bee (Heterotrigona itama) honey using a swift scheme. J Food Compos Anal. 2018;66:46–54.
  • Basari N, Ramli SN, Khairi N. Food reward and distance influence the foraging pattern of stingless bee. Heterotrigona Itama Insects 2018; 9(4):138.
  • Ismail MM, Ismail W. Development of stingless beekeeping projects in Malaysia. In: E3S Web of Conferences. EDP Sciences; 2018. p. 28.
  • Kelly N, Farisya MSN, Kumara TK, et al. Species diversity and external nest characteristics of stingless bees in meliponiculture. Pertanika J Trop Agric Sci. 2014;37(3):293–299.
  • Zulkhairi AFA, Sabri S, Ismail M, et al. Probiotic properties of Bacillus strains isolated from stingless bee (Heterotrigona itama) honey collected across Malaysia. IJERPH. 2019;17(1):278.
  • Varaldo PE, Facinelli B, Bagnarelli P, et al. Antimicrobial resistance: a challenge for the future. In: The first outstanding 50 years of “Università Politecnica delle Marche. Springer; 2020. p. 13–29.
  • Organization WH. Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. Genewa: World Health Organization; 2017.
  • Mokaya HO, Bargul JL, Irungu JW, et al. Bioactive constituents, in vitro radical scavenging and antibacterial activities of selected Apis mellifera honey from Kenya. Int J Food Sci Technol. 2020;55(3):1246–1254.
  • Tuksitha L, Chen Y-L, Chen Y-L, et al. Antioxidant and antibacterial capacity of stingless bee honey from Borneo (Sarawak). J Asia Pac Entomol. 2018;21(2):563–570.
  • Zainol MI, Yusoff KM, Yasim M. Antibacterial activity of selected Malaysian honey. BMC Complement Altern Med. 2013;13(1):129–121.
  • Bakar MFA, Sanusi SB, Bakar FIA, et al. Physicochemical and antioxidant potential of raw unprocessed honey from Malaysian stingless bees. Pakistan J Nutr. 2017;16(11):888–894.
  • Rafie M, Zulkifli A, Syahir A, et al. Supplementation of stingless bee honey from Heterotrigona itama improves antiobesity parameters in high-fat diet induced obese rat model. Evid Based Complement Alternat Med. 2018;2018:6371582. https://doi.org/10.1155/2018/6371582.
  • Syed Yaacob SN, Huyop F, Kamarulzaman Raja Ibrahim R, et al. Identification of Lactobacillus spp. and Fructobacillus spp. isolated from fresh Heterotrigona itama honey and their antagonistic activities against clinical pathogenic bacteria. J Apic Res. 2018; 57(3):395–405.
  • Szöke-Nagy T, Porav AS, Coman C, et al. Characterization of the action of antibiotics and essential oils against bacteria by surface-enhanced Raman spectroscopy and scanning electron microscopy. Anal Lett. 2019;52(1):190–200.
  • Setlow P. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J Appl Microbiol. 2006;101(3):514–525.
  • Singleton VL, Orthofer R, Lamuela-Raventós RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999; 299:152–178.
  • Isla MI, Craig A, Ordoñez R, et al. Physico chemical and bioactive properties of honeys from Northwestern Argentina. LWT Food Sci Technol. 2011;44(9):1922–1930.
  • Turkut GM, Degirmenci A, Yildiz O, et al. Investigating 5-hydroxymethylfurfural formation kinetic and antioxidant activity in heat treated honey from different floral sources. Food Measure 2018;12(4):2358–2365.
  • Hussain MB, Hannan A, Akhtar N, et al. Evaluation of the antibacterial activity of selected Pakistani honeys against multi-drug resistant Salmonella typhi. BMC Complement Altern Med. 2015;15(1):32.
  • Drummond AJ, Waigh RD. The development of microbiological methods for phytochemical screening. Recent Res Dev Phytochem. 2000;4:143–152.
  • Esti M, Panfili G, Marconi E, et al. Valorization of the honeys from the Molise region through physico-chemical, organoleptic and nutritional assessment. Food Chem. 1997;58(1–2):125–128.
  • Khalil MI, Moniruzzaman M, Boukraâ L, et al. Physicochemical and antioxidant properties of Algerian honey. Molecules 2012;17(9):11199–11215.
  • Saxena S, Gautam S, Sharma A. Physical, biochemical and antioxidant properties of some Indian honeys. Food Chem. 2010;118(2):391–397.
  • Terrab A, Recamales AF, Hernanz D, et al. Characterisation of Spanish thyme honeys by their physicochemical characteristics and mineral contents. Food Chem. 2004;88(4):537–542.
  • Lemos MS, Venturieri GC, Dantas Filho HA, et al. Evaluation of the physicochemical parameters and inorganic constituents of honeys from the Amazon region. J Apic Res. 2017;57(1):1–10.
  • Manyi-Loh CE, Clarke AM, Ndip RN. An overview of honey: therapeutic properties and contribution in nutrition and human health. African J Microbiol Res. 2011;5(8):844–852.
  • da Silva IAA, da Silva TMS, Camara CA, et al. Phenolic profile, antioxidant activity and palynological analysis of stingless bee honey from Amazonas, Northern Brazil. Food Chem. 2013;141(4):3552–3558.
  • Chua LS, Lee JY, Chan GF. Honey protein extraction and determination by mass spectrometry. Anal Bioanal Chem. 2013;405(10):3063–3074.
  • Ismail NI, Abdul Kadir MR, Mahmood NH, et al. Apini and Meliponini foraging activities influence the phenolic content of different types of Malaysian honey. J Apic Res. 2016;55(2):137–150.
  • Iurlina MO, Saiz AI, Fritz R, et al. Major flavonoids of Argentinean honeys. Optimisation of the extraction method and analysis of their content in relationship to the geographical source of honeys. Food Chem. 2009;115(3):1141–1149.
  • Islam A, Khalil I, Islam N, et al. Physicochemical and antioxidant properties of Bangladeshi honeys stored for more than one year. BMC Complement Altern Med. 2012;12(1):177.
  • Mai-Prochnow A, Clauson M, Hong J, et al. Gram positive and gram negative bacteria differ in their sensitivity to cold plasma. Sci Rep. 2016;6:38610..
  • Brudzynski K, Miotto D, Kim L, et al. Active macromolecules of honey form colloidal particles essential for honey antibacterial activity and hydrogen peroxide production. Sci Rep. 2017;7(1):7637.
  • Allen KL, Hutchinson G, Molan PC. The potential for using honey to treat wounds infected with MRSA and VRE. In: FirstWorld Wound Healing Congress. 2000. p. 10–13.
  • Oddo LP, Heard TA, Rodríguez-Malaver A, et al. Composition and antioxidant activity of Trigona carbonaria honey from Australia. J Med Food. 2008;11(4):789–794.
  • Molan PC. The antibacterial activity of honey 1. The nature of antibacterial activity. Bee World. 1992;73. http://dx.doi.org/10.1080/0005772X.1992.11099109
  • Weston RJ. The contribution of catalase and other natural products to the antibacterial activity of honey: a review. Food Chem. 2000;71(2):235–239.
  • Sarker SD, Nahar L, Kumarasamy Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007;42(4):321–324.
  • Golding CG, Lamboo LL, Beniac DR, et al. The scanning electron microscope in microbiology and diagnosis of infectious disease. Sci Rep. 2016;6:26516..
  • Henriques AF, Jenkins RE, Burton NF, et al. The effect of manuka honey on the structure of Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis. 2011;30(2):167–171.
  • Oliveira A, Ribeiro HG, Silva AC, et al. Synergistic antimicrobial interaction between honey and phage against Escherichia coli biofilms. Front Microbiol. 2017;8:2407..
  • Chen K, Sun GW, Chua KL, et al. Modified virulence of antibiotic-induced Burkholderia pseudomallei filaments. Antimicrob Agents Chemother. 2005;49(3):1002–1009.
  • Chen CZ, Cooper SL. Interactions between dendrimer biocides and bacterial membranes. Biomaterials 2002;23(16):3359–3368.
  • Cushnie TPT, O'Driscoll NH, Lamb AJ. Morphological and ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of action. Cell Mol Life Sci. 2016;73(23):4471–4492.
  • Kong K, Schneper L, Mathee K. Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS. 2010;118(1):1–36.
  • Noguchi H, Matsuhashi M, Takaoka M, et al. New antipseudomonal penicillin, PC-904: affinity to penicillin-binding proteins and inhibition of the enzyme cross-linking peptidoglycan. Antimicrob Agents Chemother. 1978;14(4):617–624.
  • El-Hajj ZW, Newman EB. How much territory can a single E. coli cell control? Front Microbiol. 2015;6:309..
  • Claessen D, Emmins R, Hamoen LW, et al. Control of the cell elongation-division cycle by shuttling of PBP1 protein in Bacillus subtilis. Mol Microbiol. 2008;68(4):1029–1046.
  • Brudzynski K, Abubaker K, Miotto D. Unraveling a mechanism of honey antibacterial action: polyphenol/H2O2-induced oxidative effect on bacterial cell growth and on DNA degradation. Food Chem. 2012;133(2):329–336.
  • Shamsudin S, Selamat J, Sanny M, et al. Influence of origins and bee species on physicochemical, antioxidant properties and botanical discrimination of stingless bee honey. Int J Food Prop. 2019;22(1):239–264.
  • Jenkins R, Burton N, Cooper R. Manuka honey inhibits cell division in methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother. 2011;66(11):2536–2542.
  • Ahmer B. Cell-to-cell signalling in Escherichia coli and Salmonella enterica. Mol Microbiol. 2004;52(4):933–945.
  • Roberts AEL, Maddocks SE, Cooper RA. Manuka honey reduces the motility of Pseudomonas aeruginosa by suppression of flagella-associated genes. J Antimicrob Chemother. 2015;70(3):716–725.