1,286
Views
2
CrossRef citations to date
0
Altmetric
Article

Comprehensive analysis of SWEET family genes in Eucalyptus (Eucalyptus grandis)

, , , , , & show all
Pages 595-604 | Received 10 Jan 2020, Accepted 26 Jun 2020, Published online: 13 Jul 2020

References

  • Ayre BG. Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning. Mol Plant. 2011; 4(3):377–394.
  • Voitsekhovskaja OV, Rudashevskaya EL, Demchenko KN, et al. Evidence for functional heterogeneity of sieve element-companion cell complexes in minor vein phloem of Alonsoa meridionalis. J Exp Bot. 2009; 60(6):1873–1883.
  • Giaquinta RT. Phloem loading of sucrose: involvement of membrane ATPase and proton transport. Plant Physiol. 1979; 63(4):744–748.
  • Lemoine R, La Camera S, Atanassova R, et al. Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci. 2013; 4:272–272.
  • Chen L. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol. 2014; 201(4):1150–1155.
  • Reuscher S, Akiyama M, Yasuda T, et al. The sugar transporter inventory of tomato: genome-wide identification and expression analysis. Plant Cell Physiol. 2014; 55(6):1123–1141.
  • Doidy J, Grace E, Kühn C, et al. Sugar transporters in plants and in their interactions with fungi. Trends Plant Sci. 2012; 17(7):413–422.
  • Xuan YH, Hu YB, Chen L, et al. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. Proc Natl Acad Sci USA. 2013; 110(39):E3685–E3694.
  • Yuan M, Wang S. Rice MtN3/Saliva/SWEET family genes and their homologs in cellular organisms. Mol Plant. 2013; 6(3):665–674.
  • Chen L, Hou B, Lalonde S, et al. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature. 2010; 468(7323):527–532.
  • Chen L, Qu X, Hou B, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science. 2012; 335(6065):207–211.
  • Klemens PAW, Patzke K, Deitmer J, et al. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiol. 2013; 163(3):1338–1352.
  • Chu Z, Yuan M, Yao J, et al. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev. 2006; 20(10):1250–1255.
  • Lin IW, Sosso D, Chen L, et al. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature. 2014;508(7497):546–549.
  • Seo PJ, Park J, Kang SK, et al. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta. 2011; 233(1):189–200.
  • Guo W, Nagy R, Chen H, et al. SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiol. 2014; 164(2):777–789.
  • Chardon F, Bedu M, Calenge F, et al. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Curr Biol. 2013; 23(8):697–702.
  • Paiva JA, Prat E, Vautrin S, et al. Advancing Eucalyptus genomics: identification and sequencing of lignin biosynthesis genes from deep-coverage BAC libraries. BMC Genomics. 2011;12(1):137 [2019 Mar 04].
  • Zhu X, Chase MW, Qiu Y, et al. Mitochondrial matR sequences help to resolve deep phylogenetic relationships in rosids. BMC Evol Biol. 2007; 7:217–217.
  • Myburg AA, Grattapaglia D, Tuskan GA, et al. The genome of Eucalyptus grandis. Nature. 2014;510(7505):356–362.
  • Kersting AR, Mizrachi E, Bornberg-Bauer E, et al. Protein domain evolution is associated with reproductive diversification and adaptive radiation in the genus Eucalyptus. New Phytol. 2015; 206(4):1328–1336.
  • Yuan M, Zhao J, Huang R, et al. Rice MtN3/saliva/SWEET gene family: Evolution, expression profiling, and sugar transport. J Integr Plant Biol. 2014; 56(6):559–570.
  • Patil G, Valliyodan B, Deshmukh R, et al. Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genomics. 2015;16(1):520 [2019 Jul 11];
  • Feng C, Han J, Han X, et al. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato. Gene. 2015;573(2):261–272.
  • Guo AY, Zhu QH, Chen X, et al. GSDS: a gene structure display server. Yi Chuan. 2007; 29(8):1023–1026.
  • Eom J, Chen L, Sosso D, et al. SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol. 2015; 25:53–62.
  • Van Bel M, Proost S, Wischnitzki E, et al. Dissecting plant genomes with the PLAZA comparative genomics platform. Plant Physiol. 2012; 158(2):590–600.
  • Ganko E, Meyers B, Vision T. Divergence in expression between duplicated genes in Arabidopsis. Mol Biol Evol. 2007;24(10):2298–2309.
  • Cannon SB, Mitra A, Baumgarten A, et al. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 2004;4:10.
  • Li X, Si W, Qin Q, et al. Deciphering evolutionary dynamics of SWEET genes in diverse plant lineages. Sci Rep. 2018;8(1):13440.[2019 Sep 17].
  • Goodstein DM, Shu S, Howson R, et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012; 40(Database issue):D1178–D1186.
  • Sui J, Xiao X, Qi J, et al. The SWEET gene family in Hevea brasiliensis - its evolution and expression compared with four other plant species. Febs Open Bio. 2017;7(12):1943–1959.
  • Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci Usa. 2004; 101(30):11030–11035.
  • Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011; 28(10):2731–2739.
  • Hu B, Wu H, Huang W, et al. SWEET gene family in Medicago truncatula: genome- wide identification, expression and substrate specificity analysis. Plants. 2019;8(9):338.
  • Chen HY, Huh JH, Yu YC, et al. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. Plant J. 2015;83(6):1046–1058.
  • Chen L, Cheung L, Feng L, et al. Transport of sugars. Annu Rev Biochem. 2015;84:865–894.
  • Hu L, Zhang F, Song S, et al. Genome-wide identification, characterization, and expression analysis of the SWEET gene family in cucumber. J Integr Agr. 2017;16(7):1486–1501.
  • Munns R. Genes and salt tolerance: bringing them together. New Phytol. 2005;167(3):645–663.
  • Slewinski TL. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: a physiological perspective. Mol Plant. 2011;4(4):641–662.
  • Oliveira LA, Breton MC, Bastolla FM, et al. Reference genes for the normalization of gene expression in Eucalyptus species. Plant Cell Physiol. 2012;53(2):405–422.