1,119
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Identification of Brassica oleracea orthologs of the PEBP family and their expression patterns in curd development and flowering in cauliflower

, , , , &
Pages 605-613 | Received 23 Feb 2020, Accepted 26 Jun 2020, Published online: 01 Sep 2020

References

  • Bouché F, Lobet G, Tocquin P, et al. FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res. 2016;44(D1):D1167–D1171.
  • Amasino R. Seasonal and developmental timing of flowering. Plant J. 2010;61(6):1001–1013.
  • Andres F, Coupland G. The genetic basis of flowering responses to seasonal cues. Nat Rev Genet. 2012;13(9):627–639.
  • Blazquez MA, Ahn JH, Weigel D. A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat Genet. 2003;33(2):168–171.
  • Bradley D, Ratcliffe O, Vincent C, et al. Inflorescence commitment and architecture in Arabidopsis. Science. 1997;275(5296):80–83.
  • Roux F, Touzet P, Cuguen J, et al. How to be early flowering: an evolutionary perspective. Trends Plant Sci. 2006;11(8):375–381.
  • Fang M, Zhou Z, Zhou X, et al. Overexpression of OsFTL10 induces early flowering and improves drought tolerance in Oryza sativa L. PeerJ. 2019;7:e6422
  • Shan H, Cheng J, Zhang R, et al. Developmental mechanisms involved in the diversification of flowers. Nat Plants. 2019;5(9):917–923.
  • Turck F, Fornara F, Coupland G. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu Rev Plant Biol. 2008;59:573–594.
  • Fornara F, de Montaigu A, Coupland G. SnapShot: control of flowering in Arabidopsis. Cell. 2010;141(3):550–550.e2.
  • Kardailsky I, Shukla VK, Ahn JH, et al. Activation tagging of the floral inducer FT. Science. 1999;286(5446):1962–1965.
  • Karlgren A, Gyllenstrand N, Källman T, et al. Evolution of the PEBP gene family in plants: functional diversification in seed plant evolution. Plant Physiol. 2011;156(4):1967–1977.
  • Mátyás KK, Hegedűs G, Taller J, et al. Different expression pattern of flowering pathway genes contribute to male or female organ development during floral transition in the monoecious weed Ambrosia artemisiifolia L. (Asteraceae). PeerJ. 2019;7:e7421
  • Yoo SC, Chen C, Rojas M, et al. Phloem long-distance delivery of FLOWERING LOCUS T (FT) to the apex. Plant J. 2013;75(3):456–468.
  • Chautard H, Jacquet M, Schoentgen F, et al. Tfs1p, a member of the PEBP family, inhibits the Ira2p but not the Ira1p Ras GTPase-activating protein in Saccharomyces cerevisiae. Eukaryotic Cell. 2004;3(2):459–470.
  • Ahn JH, Miller D, Winter VJ, et al. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. Embo J. 2006;25(3):605–614.
  • Hanano S, Goto K. Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell. 2011;23(9):3172–3184.
  • Huang N, Jane W, Chen J, et al. Arabidopsis thaliana CENTRORADIALIS homologue (ATC) acts systemically to inhibit floral initiation in Arabidopsis. Plant J. 2012;72(2):175–184.
  • Yoo SJ, Chung KS, Jung SH, Yoo SY, et al. BROTHER OF FT AND TFL1 (BFT) has TFL1-like activity and functions redundantly with TFL1 in inflorescence meristem development in Arabidopsis. Plant J. 2010;63(2):241–253.
  • Xi W, Liu C, Hou X, et al. MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell. 2010;22(6):1733–1748.
  • Harig L, Beinecke FA, Oltmanns J, et al. Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco. Plant J. 2012;72(6):908–921.,
  • Meng X, Muszynski MG, Danilevskaya ON. The FT-Like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell. 2011;23(3):942–960.
  • Cai Y, Chen X, Xie K, et al. Dlf1, a WRKY transcription factor, is involved in the control of flowering time and plant height in rice. PLoS One. 2014;9(7):e102529
  • Wu C, You C, Long T, et al. RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc Natl Acad Sci USA. 2008;105(35):12915–12920.
  • Wu W, Zheng XM, Lu G, et al. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proc Natl Acad Sci USA. 2013;110(8):2775–2780.
  • Hsu CY, Adams JP, Kim H, et al. FLOWERING LOCUS T duplication coordinates reproductive and vegetative growth in perennial poplar. Proc Natl Acad Sci USA. 2011;108(26):10756–10761.
  • Mohamed R, Wang CT, Ma C, et al. Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. Plant J. 2010;62(4):674–688.
  • Li Q, Fan C, Zhang X, et al. Identification of a soybean MOTHER OF FT and TFL1 homolog involved in regulation of seed germination. PLoS One. 2014;9(6):e99642
  • Nan H, Cao D, Zhang D, et al. GmFT2a and GmFT5a redundantly and differentially regulate flowering through interaction with and upregulation of the bZIP transcription factor GmFDL19 in soybean. PLoS One. 2014;9(5):e97669
  • Navarro C, Abelenda JA, Cruz-Oró E, Cuéllar CA, et al. Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature. 2011;478(7367):119–122.
  • Lee R, Baldwin S, Kenel F, et al. FLOWERING LOCUS T genes control onion bulb formation and flowering. Nat Commun. 2013;4:2884.
  • Picchi V, Migliori C, Scalzo RL, et al. Phytochemical content in organic and conventionally grown Italian cauliflower. Food Chem. 2012;130(3):501–509.
  • Zhao ZQ, Gu HH, Sheng XG, et al. Genome-wide single-nucleotide polymorphisms discovery and high-density genetic map construction in cauliflower using specific-locus amplified fragment sequencing. Front Plant Sci. 2016;7:334
  • Sheng XG, Zhao ZQ, Wang JS, et al. Genome wide analysis of MADS-box gene family in Brassica oleracea reveals conservation and variation in flower development. BMC Plant Biol. 2019;19(1):106
  • Schiessl S, Samans B, Hüttel B, et al. Capturing sequence variation among flowering-time regulatory gene homologs in the allopolyploid crop species Brassica napus. Front Plant Sci. 2014;5:404
  • Schiessl S, Huettel B, Kuehn D, et al. Targeted deep sequencing of flowering regulators in Brassica napus reveals extensive copy number variation. Sci. Data. 2017;4:170013.
  • Zhang X, Meng L, Liu B, et al. A transposon insertion in FLOWERING LOCUS T is associated with delayed flowering in Brassica rapa. Plant Sci. 2015;241:211–220.
  • Doyle JJ, Flagel LE, Paterson AH, Rapp RA, et al. Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet. 2008;42:443–461.
  • Otto SP, Whitton J. Polyploid incidence and evolution. Annu Rev Genet. 2000;34:401–437.
  • Liu SY, Liu YM, Yang XH, et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun. 2014;5:3930
  • Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 2006;140(2):411–432.
  • Chalhoub B, Denoeud F, Liu SY, et al. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science. 2014;345(6199):950–953.
  • Feng CY, Chen ZF, Pei LL, et al. Genome-wide identification, phylogeny, and expression analysis of the CA gene family in tomato. Biotechnol Biotec Eq. 2020;34(1):70–83.
  • Teng RM, Wang YX, Wang WL, et al. Genome-wide identification, classification and expression pattern of LBD gene family in Camellia sinensis. Biotechnol Biotec Eq. 2018;32(6):1387–1397.
  • Li Z, Jiang D, He Y. FRIGIDA establishes a local chromosomal environment for FLOWERING LOCUS C mRNA production. Nat Plants. 2018;4(10):836–846.
  • Kobayashi Y, Kaya H, Goto K, et al. A pair of related genes with antagonistic roles in mediating flowering signals. Science. 1999;286(5446):1960–1962.
  • Yoo S, Kardailsky I, Lee JS, et al. Acceleration of flowering by over-expression of MFT (MOTHER OF FT AND TFL1). Mol Cells. 2004;17:95–101.
  • Duclos DV, Björkman T. Meristem identity gene expression during curd proliferation and flower initiation in Brassica oleracea. J Exp Bot. 2008;59(2):421–433.
  • Yu J, Zhao M, Wang X, et al. Bolbase: a comprehensive genomics database for Brassica oleracea. BMC Genomics. 2013;14:664
  • Bowers JE, Chapman BA, Rong J, et al. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature. 2003;422(6930):433–438.
  • Saha G, Park JI, Jung HJ, et al. Genome-wide identification and characterization of MADS-box family genes related to organ development and stress resistance in Brassica rapa. BMC Genomics. 2015;16:178
  • Lan TH, Paterson AH. Comparative mapping of quantitative trait loci sculpting the curd of Brassica oleracea. Genetics. 2000;155(4):1927–1954.