5,652
Views
11
CrossRef citations to date
0
Altmetric
Review

Engineering drought tolerance in plants by modification of transcription and signalling factors

, , , &
Pages 781-789 | Received 27 Mar 2020, Accepted 31 Jul 2020, Published online: 12 Aug 2020

References

  • IPCC. Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York (NY): Cambridge University Press; 2013.
  • FAO. Coping with water scarcity in agriculture: a global framework for action in a changing climate; FAO. 2016. p. 1–12.
  • Mekonnen MM, Hoekstra AY. Four billion people facing severe water scarcity. Sci Adv. 2016;2(2):e1500323.
  • Fathi A, Tari DB. Effect of drought stress and its mechanism in plants. Int J Life Sci. 2016;10(1):1–6.
  • Dinakar C, Djilianov D, Bartels D. Photosynthesis in desiccation tolerant plants: energy metabolism and antioxidative stress defense. Plant Sci. 2012;182:29–41.
  • Liang C. Genetically modified crops with drought tolerance: achievements, challenges, and perspectives. In: Hossain M, Wani S, Bhattacharjee S, Burritt D, Tran LS, editors. Drought stress tolerance in plants. Vol 2. Cham: Springer; 2016.
  • Farooq M, Gogoi N, Barthakur S, et al. Drought stress in grain legumes during reproduction and grain filling. J Agro Crop Sci. 2017;203(2):22–81.
  • Chaves MM. Effects of water deficits on carbon assimilation. J Exp Bot. 1991;42(1):1–16.
  • Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress: effects, mechanisms and management. Agron Sustain Dev. 2009;29(1):185–212.
  • Khan Z, Sohail S, Jan A, et al. Genetic engineering approaches to understanding drought tolerance in plants. Plant Biotechnol. Rep. 2020;14:151–162.
  • Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol. 2008;59:651–681.
  • Rao N, Neelapu R, and C. Surekha Transgenic plants for higher antioxidant contents and salt stress. In: Wan S, Hussain M, editors. Managing salt tolerance in plants: molecular and genomic perspectives. 2015. Boca Raton: Taylor & Francis, p. 391–406.
  • Wani SH, Dutta T, Neelapu NRR, Surekha C. Transgenic approaches to enhance salt and drought tolerance in plants. Plant Gene. 2017;11:219–231.
  • Wang H, Wang H, Shao H, et al. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci. 2016;7:67.
  • Stagnari F, Galieni A, Pisante M. Drought stress effects on crop quality. In: Ahmad P, editor. Water stress and crop plants: a sustainable approach, Vol. 2. New York (NY): Wiley; 2016; p. 375–392.
  • Valliyodan B, Nguyen HT. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol. 2006;9(2):189–195.
  • Cho SH, Von Schwartzenberg K, Quatrano R, et al. The role of abscisic acid in stress tolerance. Annu Plant Rev. 2009;36:282–297.
  • Sah SK, Reddy KR, Li J. Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci. 2016;7:1–26.
  • Ashraf M. Inducing drought tolerance in plants: recent advances. Biotechnol Adv. 2010;28(1):169–183.
  • Rabara RC, Tripathi P, Rushton PJ. The potential of transcription factor-based genetic engineering in improving crop tolerance to drought. OMICS A J Integr Biol. 2014;18: 601–614.
  • Yang S, Vanderbeld B, Wan J, et al. Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant. 2010;3(3):469–490.
  • Denby K, Gehring C. Engineering drought and salinity tolerance in plants: lessons from genome-wide expression profiling in Arabidopsis. Trends Biotechnol. 2005;23(11):9–14.
  • Khan S, Anwar S, Yu S, et al. Development of drought-tolerant transgenic wheat: achievements and limitations. Int J Mol Sci. 2019;20(13):3350.
  • Gill SS, Gill R, Tuteja R, et al. Genetic engineering of crops: a ray of hope for enhanced food security. Plant Signal Behav. 2014;9(3):e28545.
  • Ishizaki T, Maruyama K, Obara M, et al. Expression of Arabidopsis DREB1C improves survival, growth, and yield of upland New Rice for Africa (NERICA) under drought. Mol Breeding. 2013;31(2):255–264.
  • Fuganti-Pagliarini R, Ferreira LC, Rodrigues FA, et al. Characterization of soybean genetically modified for drought tolerance in field conditions. Front Plant Sci. 2017;8:1–15.
  • Shavrukov Y, Baho M, Lopato S, et al. The TaDREB3 transgene transferred by conventional crossings to different genetic backgrounds of bread wheat improves drought tolerance. Plant Biotechnol J. 2016;14(1):313–322.
  • Morran S, Eini O, Pyvovarenko T, et al. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biotechnol J. 2011;9(2):230–249.
  • Datta K, Baisakh N, Ganguly M, et al. Overexpression of Arabidopsis and rice stress genes' inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnol J. 2012;10(5):579–586.
  • Bhatnagar-Mathur P, Rao JS, Vadez V, et al. Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress. Mol Breeding. 2014;33(2):327–340.
  • Scarpeci TE, Frea VS, Zanor MI, et al. Overexpression of AtERF019 delays plant growth and senescence and improves drought tolerance in Arabidopsis. J Exp Bot. 2016;68:673–685.
  • Hsieh E-J, Cheng M-C, Lin T-P. Functional characterization of an abiotic stress-inducible transcription factor AtERF53 in Arabidopsis thaliana. Plant Mol Biol. 2013;82(3):223–237.
  • Deokar AA, Kondawar V, Kohli D, et al. The CarERF genes in chickpea (Cicer arietinum L.) and the identification of CarERF116 as abiotic stress responsive transcription factor. Funct Integr Genomics. 2015;15(1):27–46.
  • Zhu M, Meng X, Cai J, et al. Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. BMC Plant Biol. 2018;18(1):1–14.
  • Ying S, Zhang D-F, Fu J, et al. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. Planta. 2012;235(2):253–266.
  • Pandey AS, Sharma E, Jain N, et al. A rice bZIP transcription factor, OsbZIP16, regulates abiotic stress tolerance when over-expressed in Arabidopsis. J Plant Biochem Biotechnol. 2018;27(4):393–400.
  • Liang C, Meng Z, Meng Z, et al. GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L). Sci Rep. 2016;6:35040.
  • Zhao Y, Cheng X, Liu X, et al. The wheat MYB transcription factor TaMYB 31 is involved in drought stress responses in Arabidopsis. 2018;9:1426.
  • Li W-X, Oono Y, Zhu J, et al. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell. 2008;20(8):2238–2251.
  • Hussain SS, Kayani MA, Amjad M. Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol Prog. 2011;27(2):297–306.
  • Broun P. Transcription factors as tools for metabolic engineering in plants. Curr Opin Plant Biol. 2004;7(2):202–209.
  • Sakuma Y, Maruyama K, Qin F, et al. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA. 2006;103(49):18822–18827.
  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol. 2003;6(5):410–417.
  • Ratcliffe OJ, Riechmann JL, Biotechnology M, et al. Arabidopsis transcription factors and the regulation of flowering time: a genomic perspective. Curr Issues Mol Biol. 2002;4(3):77–91.
  • Palaniswamy SK, James S, Sun H, et al. AGRIS and AtRegNet. A platform to link cis-regulatory elements and transcription factors into regulatory networks. Plant Physiol. 2006;140(3):818–829.
  • Guo A, Chen X, Gao G, et al. PlantTFDB: a comprehensive plant transcription factor database. Nucleic Acids Res. 2008;36(Database issue):D966–D969.
  • Riaño-Pachón DM, Ruzicic S, Dreyer I, et al. PlnTFDB: an integrative plant transcription factor database. BMC Bioinf. 2007;10:1–10.
  • Bray EA. Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot. 2004;55(407):2331–2341.
  • Fujita Y, Fujita M, Satoh R, et al. AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell. 2005;17(12):3470–3488.
  • Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low- temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell. 1998;10(8):1391–1406.
  • Kim S, Kang J, Cho D, et al. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance. Plant J. 2004;40(1):75–87.
  • Uno Y, Furihata T, Abe H, et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci USA. 2000;97(21):11632–11637.
  • Cominelli E, Galbiati M, Vavasseur A, et al. A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance. Curr Biol. 2005;15(13):1196–1200.
  • Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot. 2011;62(14):4731–4748.
  • Kudo M, Kidokoro S, Yoshida T, et al. A gene-stacking approach to overcome the trade-off between drought stress tolerance and growth in Arabidopsis. Plant J. 2019;97(2):240–256.
  • Qin F, Sakuma Y, Li J, et al. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L. Plant Cell Physiol. 2004;45(8):1042–1052.
  • Liu C, Mao B, Ou S, et al. OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol. 2014;84(1–2):19–36.
  • Zong W, Tang N, Yang J, et al. Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought resistance related genes. Plant Physiol. 2016;171(4):2810–2825.
  • Amir Hossain M, Lee Y, Cho J-I, et al. The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol. 2010;72(4–5):557–566.
  • Hu H, Dai M, Yao J, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA. 2006;103(35):12987–12992.
  • Hong Y, Zhang H, Huang L, et al. Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci. 2016;7:4.
  • Jisha V, Dampanaboina L, Vadassery J, et al. Overexpression of an AP2/ERF type transcription factor OsEREBP1 confers biotic and abiotic stress tolerance in rice. PLoS One. 2015; 10(6):e0127831.
  • Lee D-K, Jung H, Jang G, et al. Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance. Plant Physiol. 2016;172(1):575–588.
  • Wang M, Zhuang J, Zou Z, et al. Overexpression of a Camellia sinensis DREB transcription factor gene (CsDREB) increases salt and drought tolerance in transgenic Arabidopsis thaliana. J Plant Biol. 2017;60(5):452–461.
  • Zhang JZ. Overexpression analysis of plant transcription factors. Curr Opin Plant Biol. 2003;6(5):430–440.
  • Esmaeili N, Yang X, Cai Y, et al. Co-overexpression of AVP1 and OsSIZ1 in Arabidopsis substantially enhances plant tolerance to drought, salt, and heat stresses. Sci Rep. 2019;9(1):1–15.
  • Liu W, Yuan JS, Stewart CN. Advanced genetic tools for plant biotechnology. Nat Rev Genet. 2013;14(11):781–793.
  • Liu W, Stewart CN. Plant synthetic promoters and transcription factors. Curr Opin Biotechnol. 2016;37:36–44.
  • Nakai Y, Nakahira Y, Sumida H, et al. Vascular plant one-zinc-finger protein 1/2 transcription factors regulate abiotic and biotic stress responses in Arabidopsis. Plant J. 2013;73(5):761–775.
  • Yin M, Wang Y, Zhang L, et al. The Arabidopsis Cys2/His2 zinc finger transcription factor ZAT18 is a positive regulator of plant tolerance to drought stress. J Exp Bot. 2017;68(11):2991–3005.
  • You J, Xiong L. Genetic improvement of drought resistance in rice. In: Jaiwal PK, Singh RP, Dhankher OP, editors. Genetic manipulation in plants for mitigation of climate change. Springer; 2015. p. 73–102.
  • Thapa G, Dey M, Sahoo L, et al. An insight into the drought stress induced alterations in plants. Biol Plant. 2011;55(4):603–613.
  • Goyal K, Walton LJ, Tunnacliffe A. LEA proteins prevent protein aggregation due to water stress. Biochem J. 2005;388(Pt 1):151–157.
  • Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol. 2005;16(2):123–132.
  • Zhang L, Xi D, Li S, et al. A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. Plant Mol Biol. 2011;77(1–2):17–31.
  • Feng J, Wang L, Wu Y, et al. TaSnRK2.9, a sucrose non-fermenting 1-related protein kinase gene, positively regulates plant response to drought and salt stress in transgenic tobacco. Front Plant Sci. 2018;9:2003–2017.
  • Dey A, Samanta MK, Gayen S, et al. The sucrose non-fermenting 1-related kinase 2 gene SAPK9 improves drought tolerance and grain yield in rice by modulating cellular osmotic potential, stomatal closure and stress-responsive gene expression. BMC Plant Biol. 2016;16(1):1–20.
  • Luo Q, Wei Q, Wang R, et al. BdCIPK31, a calcineurin B-like protein-interacting protein kinase, regulates plant response to drought and salt stress. Front Plant Sci. 2017;8:1116–1184.
  • Vivek PJ, Tuteja N, Soniya EV. CDPK1 from ginger promotes salinity and drought stress tolerance without yield penalty by improving growth and photosynthesis in Nicotiana tabacum. PLoS One. 2013;8(10):e76392.
  • Wang Y, Sun T, Li T, et al. A CBL-interacting protein kinase TaCIPK2 confers drought tolerance in transgenic tobacco plants through regulating the stomatal movement. PLoS One. 2016;11(12):e0167962.
  • Wei S, Hu W, Deng X, et al. A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC Plant Biol. 2014;14:113–133.
  • Christov NK, Christova PK, Kato H, et al. TaSK5, an abiotic stress-inducible GSK3/shaggy-like kinase from wheat, confers salt and drought tolerance in transgenic Arabidopsis. Plant Physiol Biochem. 2014;84:251–260.
  • Bundó M, Coca M. Calcium-dependent protein kinase OsCPK10 mediates both drought tolerance and blast disease resistance in rice plants. J Exp Bot. 2017;68(11):2963–2975.
  • Jagodzik P, Tajdel-Zielinska M, Ciesla A, et al. Mitogen-activated protein kinase cascades in plant hormone signaling. Front Plant Sci. 2018;9:1387.
  • Xu J, Zhang S. Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci. 2015;20(1):56–64.
  • Cutler S, Ghassemian M, Bonetta D, et al. A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science. 1996;273(5279):1239–1241.
  • Pei ZM, Ghassemian M, Kwak CM, et al. Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science. 1998;282(5387):287–290.
  • Wang Y, Ying J, Kuzma M, et al. Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J. 2005;43(3):413–424.
  • Wang Y, Beaith M, Chalifoux M, et al. Shoot-specific down-regulation of protein farnesyltransferase (alpha-subunit) for yield protection against drought in canola. Mol Plant. 2009;2(1):191–200.
  • Huang G-T, Ma S-L, Bai L-P, et al. Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep. 2012;39(2):969–987.
  • Umezawa T, Yoshida R, Maruyama K, et al. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Front Ecol Evol. 2004;101(49):17306–17311.
  • Coello P, Hey SJ, Halford NG. The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J Exp Bot. 2011;62(3):883–893.
  • Li R, Zhang J, Wei J, et al. Functions and mechanisms of the CBL-CIPK signaling system in plant response to abiotic stress. Prog Nat Sci. 2009;19(6):667–676.
  • Manik SMN, Shi S, Mao J, et al. The calcium sensor CBL-CIPK is involved in plant’s response to abiotic stresses. Int J Genomics. 2015;2015:1–12.