1,595
Views
7
CrossRef citations to date
0
Altmetric
Article

Synthesis, characterization, antimicrobial and cytotoxicity evaluation of quaternary cadmium (II)-quercetin complexes with 1,10-phenanthroline or 2,2’-bipyridine ligands

, , , , , , , , , , , & show all
Pages 999-1012 | Received 16 Mar 2020, Accepted 04 Aug 2020, Published online: 08 Sep 2020

References

  • WHO Promoting Access to Medical Technologies and Innovation Intersections between public health, intellectual property, and trade. World Health Organization, World Intellectual Property Organization, and World Trade Organization. 2012. (www.who.int/phi/en/, www.wto.org).
  • Rocha DP, Pinto GF, Ruggiero R, et al. Coordenação de metais a antibióticos como uma estratégia de combate à resistência bacteriana. Quím Nova. 2011;34(1):111–118.
  • Tortora GJ, Funke BR, Case CL. Microbiologia. 6th ed. Porto Alegre: Artmed; 2003.
  • Willey JM, Sherwood LM, Woolverton CJ. Prescott, Harley, and Klein's microbiology. 7th ed. New York (NY): McGraw-Hill; 2008.
  • Santos AF, Brotto DF, Favarin LRV, et al. Study of the antimicrobial activity of metal complexes and their ligands through bioassays applied to plant extracts. Rev Bras Farmacogn. 2014;24(3):309–315. http://dx.doi.org/10.1016/j.bjp.2014.07.008).
  • Mendiguchia BS, Aiello I, Crispini A. Zn(ii) and Cu(ii) complexes containing bioactive O,O-chelated ligands: Homoleptic and heteroleptic metal-based biomolecules. Dalton Trans. 2015;44(20):9321–9687.
  • Proença C, Freitas M, Ribeiro D, et al. α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure-activity relationship study. J Enzyme Inhib Med Chem. 2017;32(1):1216–1228.
  • Torreggiani A, Tamba M, Trinchero A, et al. Copper (II)-Quercetin complexes in aqueous solutions: Spectroscopic and kinetic properties. J Mol Struct. 2005;744-747:751–759.
  • Selvaraj S, Krishnaswamy S, Devashya V, et al. Flavonoid-metal ion complexes: a novel class of therapeutic agents. Med Res Rev. 2014;34(4):677–702.
  • Masip L, Veeravalli K, Georgiou G. The many faces of glutathione in bacteria. Antioxid Redox Signal. May 2006;8(5-6):753–762.).
  • Liu Y, Guo M. Studies on Transition Metal-Quercetin Complexes Using Electrospray Ionization Tandem Mass Spectrometry. Molecules. 2015;20(5):8583–8594.
  • Kasprzak MM, Erxleben A, Ochocki J. Properties and applications of flavonoid metal complexes. RSC Adv. 2015;5(57):45853–45877.
  • Zhou Y, Wu Y, Jiang X, et al. The effect of quercetin on the Osteogenesic Differentiation and Angiogenic Factor Expression of Bone Marrow-Derived Mesenchymal Stem Cells . PLoS One. 2015;10(6):e0129605[Cited 2015 Jun 08].
  • Raie DS, Mhatre E, Thiele M, et al. Application of quercetin and its bio-inspired nanoparticles as anti-adhesive agents against Bacillus subtilis attachment to surface. Mater Sci Eng C Mater Biol Appl. 2017;70(Pt 1):753–762.
  • Usman M, Khurram Amin M, Khan TA, et al. Effects of luteolin and quercetin in combination with some conventional antibiotics against methicillin-resistant Staphylococcus aureus. Int. J. Mol. Sci. 2016;17(11):1947.
  • Pejin B, Ciric A, Markovic JD, et al. Quercetin potently reduces biofilm formation of the strain pseudomonas aeruginosa PAO1 in vitro. Curr Pharm Biotechnol. 2015;16(8):733–737.
  • Cornard JP, Merlin JC. Comparison of the chelating power of hydroxyflavones. J Mol Struct. 2003;651–653:381–387.
  • Liu HK, Sadler J. Metal complexes as DNA intercalators. Acc Chem Res. 2011;44(5):349–359.
  • Zhao MH, Yuan L, Meng LY, et al. Quercetin-loaded mixed micelles exhibit enhanced cytotoxic efficacy in non-small cell lung cancer in vitro . Exp Ther Med. 2017;14(6):5503–5508.
  • Nataraj L, Perumal S, Sellamuthu M. Antioxidant activity and free radical scavenging capacity of phenolic extracts from Helicteres isora L. and Ceiba pentandra L. J Food Sci Technol. 2013; 50(4):687–695.
  • Sanz Mendiguchia B, Pucci D, Mastropietro TF, et al. Non-classical anticancer agents: on the way to water soluble zinc(II) heteroleptic complexes . Dalton Trans. 2013;42(19):6768–6774.
  • Pucci D, Crispini A, Sanz Mendiguchía B, et al. Improving the bioactivity of Zn(II)-curcumin based complexes . Dalton Trans. 2013;42(26):9679–9687.
  • Andelescu AA, Cretu C, Sasca V, et al. New heteroleptic Zn (II) and Cu (II) complexes with quercetin and N^N ligands. Polyhedron. 2018;147:120–125. DOI:.
  • Wang S, Yao J, Zhou B, et al. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. J Food Prot. 2018; 81(1):68–78.
  • de Araújo RF, de Araújo AA, Pessoa JB, et al. Anti-inflammatory, analgesic, and anti-tumor properties of gold nanoparticles of malignant cells. Pharmacol. Rep. 2017;69(1):119–129.
  • Granato M, Rizzello C, Montani MSG, et al. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J Nutr Biochem. 2017; 41:124–136.
  • Meerloo van J, Kaspers GJL, Cloos J. Cell sensitivity assays: The MTT assay. Methods Mol. Biol. 2011; 731:237–245.
  • Guru Nathan S, Han JW, Kwon DN, et al. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nano Scale Res. Lett. 2014; 9:373.
  • Saravanan S, Vimalraj S, Vairamani M, et al. Role of mesoporous wollastonite (calcium silicate) in mesenchymal stem cell proliferation and osteoblast differentiation: a cellular and molecular study. J Biomed. Nanotechnol. 2015;11(7):1124–1138.
  • Zhou J, Wang L, Wang J, et al. Complexation and antioxidant activity of flavonoids with biologically relevant metal ions trans. Met. Chem. 2001;26(1/2):57–63.
  • Arakha M, Pal S, Samantarrai D, et al. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle–bacteria interface. Sci. Rep. 2015;5:14813. 10.1038/srep14813.
  • Singh M, Mallick AK, Banerjee M, et al. Loss of outer membrane integrity in Gram-negative bacteria by silver nanoparticles loaded with Camellia sinensis leaf phytochemicals: plausible mechanism of bacterial cell disintegration. Bull. Mater. Sci. 2016;39(7):1871–1878.
  • Li M, Ren L, Li LHua, et al. Cytotoxic Effect on Osteosarcoma MG-63 Cells by Degradation of Magnesium. Journal of Materials Science & Technology. 2014;30(9):888–893.
  • Keegan K, Halegoua S. Signal transduction pathways in neuronal differentiation. Curr Opin Neurobiol. 1993;3(1):14–19.
  • Frisch MJ, Trucks GW, Schlegel HB, et al. 2016. Gaussian 09. Wallingford CT: Gaussian, Inc..
  • Yuan Y-G, Peng Q-L, Guru Nathan S. Effects of Silver Nanoparticles on Multiple Drug-Resistant Strains of Staphylococcus aureus and Pseudomonas aeruginosa from Mastitis-Infected Goats: An Alternative Approach for Antimicrobial Therapy. IJMS. 2017;18(3):569.
  • Franco R, Cidlowski JA. Glutathione efflux and cell death. Antioxid Redox Signal. 2012;17(12):1694–1713. [cited 2012 Dec 15].
  • Xu XR, Yu HT, Yang Y, et al. Quercetin phospholipid complex significantly protects against oxidative injury in ARPE-19 cells associated with activation of the Nrf2 pathway. Eur J Pharmacol. 2016; 770:1–8.
  • Xu D, Hu M-J, Wang Y-Q, et al. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules. 2019;24(6):1123. [cited 2019 Mar 21];
  • Lee HJ, Kerr RA, Korshavn KJ, et al. Effects of hydroxyl group variations on a flavonoid backbone toward modulation of metal-free and metal-induced amyloid-β aggregation. Inorg Chem Front. 2016;3(3):381–392.