1,013
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Stepwise signal transduction cascades under salt stress in leaves of wild barley (Hordeum spontaneum)

ORCID Icon
Pages 860-872 | Received 07 May 2020, Accepted 05 Aug 2020, Published online: 24 Aug 2020

References

  • Ashraf W, Abd El-Shafi MA, Gheith EMS, et al. Using different statistical procedures for evaluation drought tolerance indices of bread wheat genotypes. Adv Agric Biol. 2015;4:19–30.
  • Zhihui L, Moxin X, Daowei Z, et al. Effects of salinity, temperature, and polyethylene glycol on the seed germination of sunflower (Helianthus annuus L.). Sci World J. 2014;2014:Article ID:170418.
  • Wu D, Qiu L, Xu L, et al. Genetic variation of HvCBF genes and their association with salinity tolerance in Tibetan annual wild barley. PloS One. 2011;6(7):e22938.
  • Gupta S, Rupasinghe T, Callahan DL, et al. Spatio-temporal metabolite and elemental profiling of salt stressed barley seeds during initial stages of germination by MALDI-MSI and µ-XRF spectrometry. Front Plant Sci. 2019;10:1139.
  • Mwando E, Han Y, Angessa TT, et al. Genome-wide association study of salinity tolerance during germination in barley (Hordeum vulgare L.). Front Plant Sci. 2020;11:118.
  • Shi Y, Gao L, Wu ZC, et al. Genome-wide association study of salt tolerance at the seed germination stage in rice. BMC Plant Biol. 2017;17(1):92.
  • Hazzouri KM, Khraiwesh B, Amiri KMA, et al. Mapping of HKT1;5 gene in barley using GWAS approach and its implication in salt tolerance mechanism. Front Plant Sci. 2018;9:156.
  • Naveed SA, Zhang F, Zhang J, et al. Identification of QTN and candidate genes for salinity tolerance at the germination and seedling stages in rice by genome-wide association analyses. Sci Rep. 2018;8(1):6505.
  • Yu J, Zhao W, Tong W, et al. A Genome-wide association study reveals candidate genes related to salt tolerance in rice (Oryza sativa) at the germination stage. IJMS. 2018;19(10):3145.
  • Chandler JW. Auxin response factors. Plant Cell Environ. 2016;39(5):1014–1028.
  • Chapman EJ, Estelle M. Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet. 2009;43:265–285.
  • Tanaka H, Dhonukshe P, Brewer PB, et al. Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cell Mol Life Sci. 2006;63(23):2738–2754.
  • Vernoux T, Brunoud G, Farcot E, et al. The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol. 2011;7:508.
  • Hirt H. MAP kinases in plant signal transduction. Results Probl Cell Differ. 2000;27:1–9.
  • Ligterink W, Hirt H. Mitogen-activated protein [MAP] kinase pathways in plants: versatile signaling tools. Int Rev Cytol. 2001;201:209–275.
  • Seguí-Simarro JM, Testillano PS, Jouannic S, et al. Mitogen-activated protein kinases are developmentally regulated during stress-induced microspore embryogenesis in Brassica napus L. Histochem Cell Biol. 2005;123(4-5):541–551.
  • Danquah A, de Zélicourt A, Boudsocq M, et al. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana. Plant J. 2015;82(2):232–244.
  • Danquah A, de Zélicourt A, Colcombet J, et al. The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv. 2014;32(1):40–52.
  • Wang B, Chu J, Yu T, et al. Tryptophan-independent auxin biosynthesis contributes to early embryogenesis in Arabidopsis. Proc Natl Acad Sci USA. 2015;112(15):4821–4826.
  • de Zelicourt A, Colcombet J, Hirt H. The role of MAPK modules and ABA during abiotic stress signaling. Trends Plant Sci. 2016;21(8):677–685.
  • Raja V, Majeed U, Kang H, et al. Abiotic stress: interplay between ROS, hormones and MAPKs. Environ. Exp. Bot. 2017;137:142–157.
  • Xu C, Liu R, Zhang Q, et al. The diversification of evolutionarily conserved MAPK cascades correlates with the evolution of fungal species and development of lifestyles. Genome Biol Evol. 2017;9(2):311–322.
  • Petrasek J, Friml J. Auxin transport routes in plant development. Development. 2009;136(16):2675–2688.
  • Leyser Q. Auxin signaling. Plant Physiol. 2018;176(1):465–479.
  • Dory M, Hatzimasoura E, Kállai BM, et al. Coevolving MAPK and PID phosphosites indicate an ancient environmental control of PIN auxin transporters in land plants. FEBS Lett. 2018;592(1):89–102.
  • Bahieldin A, Atef A, Sabir JSM, et al. RNA-Seq analysis of the wild barley (H. spontaneum) leaf transcriptome under salt stress. C R Biol. 2015;338(5):285–297.
  • Min XJ, Butler G, Storms R, et al. OrfPredictor: predicting protein-coding regions in EST-derived sequences. Nucleic Acids Res. 2005;33(Web Server issue):W677–W680.
  • Wang H, Jones B, Li Z, et al. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell. 2005;17(10):2676–2692.
  • Abel S, Nguyen MD, Theologis A. The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana. J Mol Biol. 1995;251(4):533–549.
  • McSteen P. Auxin and monocot development. Cold Spring Harb Perspect Biol. 2010;2(3):a001479.
  • Ji J, Strable J, Shimizu R, et al. WOX4 promotes procambial development. Plant Physiol. 2010;152(3):1346–1356.
  • Brackmann K, Qi J, Gebert M, et al. Spatial specificity of auxin responses coordinates wood formation. Nat Commun. 2018;9(1):875.
  • Paponov IA, Paponov M, Teale W, et al. Comprehensive transcriptome analysis of auxin responses in Arabidopsis. Mol Plant. 2008;1(2):321–337.
  • Knauss S, Rohrmeier T, Lehle L. The auxin-induced maize gene ZmSAUR2 encodes a short-lived nuclear protein expressed in elongating tissues. J Biol Chem. 2003;278(26):23936–23943.
  • Jagodzik P, Tajdel-Zielinska M, Ciesla A, et al. Mitogen-activated protein kinase cascades in plant hormone signaling. Front Plant Sci. 2018;9:1387.
  • Gao M, Liu J, Bi D, et al. MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res. 2008;18(12):1190–1198.
  • Teige M, Scheikl E, Eulgem T, et al. The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell. 2004;15(1):141–152.
  • Tak H, Negi S, Rajpurohit YS, et al. MusaMPK5, a mitogen activated protein kinase is involved in regulation of cold tolerance in banana. Plant Physiol Biochem. 2020;146:112–123.
  • Wang H, Ngwenyama N, Liu Y, et al. Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell. 2007;19(1):63–73.
  • Gupta R, Chakrabarty SK. Gibberellic acid in plant, still a mystery unresolved. Plant Signal. Behav. 2013;8(9):e25504.
  • Sheikh AH, Raghuram B, Jalmi SK, et al. Interaction between two rice mitogen activated protein kinases and its possible role in plant defense. BMC Plant Biol. 2013;13:121.
  • Rodriguez MC, Petersen M, Mundy J. Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol. 2010;61:621–649.
  • Hettenhausen C, Schuman MC, Wu G. MAPK signaling: a key element in plant defense response to insects. Insect Sci. 2015;22(2):157–164.
  • Bigeard J, Hirt H. Nuclear signaling of plant MAPKs. Front Plant Sci. 2018;9:469.
  • Smekalova V, Doskocilova A, Komis G, et al. Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol Adv. 2014;32(1):2–11.
  • Mohanta TK, Arora PK, Mohanta N, et al. Identification of new members of the MAPK gene family in plants shows diverse conserved domains and novel activation loop variants. BMC Genomics. 2015;16:58.
  • Simonini S, Deb J, Moubayidin L, et al. A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis. Genes Dev. 2016;30(20):2286–2296.
  • Enders TA, Frick EM, Strader LC. An Arabidopsis kinase cascade influences auxin-responsive cell expansion. Plant J. 2017;92(1):68–81.
  • Corredoira E, Cano V, Bárány I, et al. Initiation of leaf somatic embryogenesis involves high pectin esterification, auxin accumulation and DNA demethylation in Quercus alba. J Plant Physiol. 2017;213:42–54.
  • Wójcikowska B, Gaj MD. Expression profiling of AUXIN RESPONSE FACTOR genes during somatic embryogenesis induction in Arabidopsis. Plant Cell Rep. 2017;36(6):843–858.
  • Kamada M, Miyamoto K, Oka M, et al. Regulation of asymmetric polar auxin transport by PsPIN1 in endodermal tissues of etiolated Pisum sativum epicotyls: focus on immunohistochemical analyses. J Plant Res. 2018;131(4):681–692.
  • Dai Y, Wang H, Li B, et al. Increased expression of MAP KINASE KINASE7 causes deficiency in polar auxin transport and leads to plant architectural abnormality in Arabidopsis. Plant Cell. 2006;18(2):308–320.
  • Jia W, Li B, Li S, et al. Mitogen-activated protein kinase cascade MKK7-MPK6 plays important roles in plant development and regulates shoot branching by phosphorylating PIN1 in Arabidopsis. PLoS Biol. 2016;14(9):e1002550.
  • Colcombet J, Sözen C, Hirt H. Convergence of multiple MAP3Ks on MKK3 identifies a set of novel stress MAPK modules. Front Plant Sci. 2016;7:1941.
  • Dóczi R, Brader G, Pettkó-Szandtner A, et al. The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell. 2007;19(10):3266–3279.
  • Umezawa T, Sugiyama N, Takahashi F, et al. Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci Signal. 2013;6(270):rs8.
  • Sözen C, Schenk ST, Boudsocq M, et al. Wounding and insect feeding trigger two independent MAPK pathways with distinct regulation and kinetics. Plant Cell. 2020;32(6):1988–2003.
  • Hõrak H. Defense, fast and slow: activation of different MAPK pathways in response to wounding. Plant Cell. 2020;32(6):1788–1789.
  • Shang Y, Dai C, Lee MM, et al. BRI1-associated receptor kinase 1 regulates guard cell ABA signaling mediated by open stomata 1 in Arabidopsis. Mol Plant. 2016;9(3):447–460.
  • Gouda MHB, Zhang C, Wang J, et al. ROS and MAPK cascades in the post-harvest senescence of horticultural products. J. Proteomics Bioinform. 2020;13(1):1–7.DOI:10.35248/0974-276X.1000508.
  • Takahashi F, Mizoguchi T, Yoshida R, et al. Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Mol Cell. 2011;41(6):649–660.
  • Wang P, Zhao Y, Li Z, et al. Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol Cell. 2018;69(1):100–112.
  • Zhu D, Chang Y, Pei T, et al. The MAPK‐like protein 1 positively regulates maize seedling drought sensitivity by suppressing ABA biosynthesis. Plant J. 2020;102(4):747–760.