1,084
Views
3
CrossRef citations to date
0
Altmetric
Article

Genomic and morphological characteristics of the cold-adapted bacteria Mycetocola saprophilus provide insights into the pathogenesis of soft rot in Flammulina velutipes

ORCID Icon, , , , &
Pages 885-897 | Received 21 Apr 2020, Accepted 06 Aug 2020, Published online: 20 Aug 2020

References

  • Tang C, Hoo PCX, Tan LTH, et al. Golden needle mushroom: a culinary medicine with evidenced-based biological activities and health promoting properties. Front Pharmacol. 2016;7:474. doi:10.3389/fphar.2016.00474
  • Li X, Li Y. Quality comparison and analysis on white Flammulina velutipes grown with bottle lines in China. Edib Fungi China. 2014;32:20–24.
  • Wu Z, Peng W, He X, et al. Mushroom tumor: a new disease on Flammulina velutipes caused by Ochrobactrum pseudogrignonense. FEMS Microbiol Lett. 2016;363(2):fnv226. doi:10.1093/femsle/fnv226
  • Liu K, Zhang G, Ma H, et al. Major infectious diseases and its preventive measures of Flammulina velutipe. Edib Fungi China. 2018;37:78–81. doi:10.13629/j.cnki.53-1054.2018.04.018
  • Bessette AE, Kerrigan RW, Jordan DC. Yellow blotch of Pleurotus ostreatus. Appl Environ Microbiol. 1985;50(6):1535–1537. doi:10.1128/AEM.50.6.1535-1537.1985
  • Thorn G, Tsuneda A. Molecular genetic characterization of bacterial isolates causing brown blotch on cultivated mushrooms in Japan. Mycoscience. 1996;37(4):409–416. doi:10.1007/BF02460997
  • Chowdhury PR, Pay J, Braithwaite M. Isolation, identification and ecology of Ewingella americana (the causal agent of internal stipe necrosis) from cultivated mushrooms in New Zealand. Aust Plant Pathol. 2007;36(5):424–428. doi:10.1071/AP07045
  • Lee CJ, Jhune CS, Cheong JC, et al. Occurrence of internal stipe necrosis of cultivated mushrooms (Agaricus bisporus) caused by Ewingella americana in Korea. Mycobiology. 2009;37(1):62–66. doi:10.4489/MYCO.2009.37.1.062
  • Han HS, Jhune CS, Cheong JC, et al. Occurrence of black rot of cultivated mushrooms (Flammulina velutipes) caused by Pseudomonas tolaasii in Korea. Eur J Plant Pathol. 2012;133(3):527–535. doi:10.1007/s10658-012-9941-4
  • Lincoln SP, Fermor TR, Tindall BJ. Janthinobacterium agaricidamnosum sp. nov, a soft rot pathogen of Agaricus bisporus. Int J Syst Evol Microbiol. 1999;49(4):1577–1589. doi:10.1099/00207713-49-4-1577
  • Gill WM, Tsuneda A. The interaction of the soft rot bacterium Pseudomonas gladioli pv. agaricicola with Japanese cultivated mushrooms. Can J Microbiol. 1997;43(7):639–648. doi:10.1139/m97-091
  • Lee CJ, Yun HS, Jhune CS, et al. Occurrence of bacterial soft rot of Pleurotus ostreatus caused by Burkholderia gladioli pv. agaricicola in Korea. J Plant Pathol. 2010;92:235–240.
  • Okamoto H, Sato M, Isaka M. Bacterial soft rot of winter mushroom and oyster mushroom caused by Erwinia carotovora subsp. carotovora. Jpn J Phytopathol. 1999;65(4):460–464. doi:10.3186/jjphytopath.65.460
  • Kim MK, Lee SH, Lee YH, et al. Characterization and chemical control of soft rot disease caused by Pantoea sp. strain PPE7 in Pleurotus eryngii mushroom crops. Eur J Plant Pathol. 2015;141(2):419–425. doi:10.1007/s10658-014-0538-y
  • Liu JY, Men JL, Chang MC, et al. iTRAQ-based quantitative proteome revealed metabolic changes of Flammulina velutipes mycelia in response to cold stress. J Proteom. 2017;156:75–84. doi:10.1016/j.jprot.2017.01.009
  • Cho H, Park JY, Kim YK, et al. Whole-genome sequence of Erwinia persicina b64, which causes pink soft rot in onions. Microbiol Resour Announc. 2019;8(1):e01302. doi:10.1128/MRA.01302-18
  • Ma X, Perna NT, Glasner JD, et al. Complete genome sequence of Dickeya dianthicola ME23, a pathogen causing blackleg and soft rot diseases of potato. Microbiol Resour Announc. 2019;8(7):18. doi:10.1128/MRA.01526-18
  • Fang Z. Research methods of plant disease. Beijing: China Agric Press; 1998.
  • Bavykin SG, Lysov YP, Zakhariev V, et al. Use of 16S rRNA, 23S rRNA, and gyrB gene sequence analysis to determine phylogenetic relationships of Bacillus cereus group microorganisms. J Clin Microbiol. 2004;42(8):3711–3730. doi:10.1128/JCM.42.8.3711-3730.2004
  • Richert K, Brambilla E, Stackebrandt E. Development of PCR primers specific for the amplification and direct sequencing of gyrB genes from microbacteria, order Actinomycetales. J Microbiol Methods. 2005;60(1):115–123. doi:10.1016/j.mimet.2004.09.004
  • Richert K, Brambilla E, Stackebrandt E. The phylogenetic significance of peptidoglycan types: molecular analysis of the genera Microbacterium and Aureobacterium based upon sequence comparison of gyrB, rpoB, recA and ppk and 16SrRNA genes. Syst Appl Microbiol. 2007;30(2):102–108. doi:10.1016/j.syapm.2006.04.001
  • Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–410. doi:10.1016/S0022-2836(05)80360-2
  • Rozewicki J, Li S, Amada KM, et al. MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Res. 2019;47(W1):W5–W10. doi:10.1093/nar/gkz342
  • Liu K, Linder CR, Warnow T. RAxML and FastTree: comparing two methods for large-scale maximum likelihood phylogeny estimation. PLoS One. 2011;6(11):e27731. doi:10.1371/journal.pone.0027731
  • Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4):783–791. doi:10.1111/j.1558-5646.1985.tb00420.x
  • Chin CS, Alexander DH, Marks PK, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods. 2013;10(6):563–569. doi:10.1038/nmeth.2474
  • Sommer DD, Delcher AL, Salzberg SL, et al. Minimus: a fast, lightweight genome assembler. BMC Bioinf. 2007;8(1):64. doi:10.1186/1471-2105-8-64
  • Majoros WH, Pertea M, Salzberg SL. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics. 2004;20(16):2878–2879. doi:10.1093/bioinformatics/bth315
  • Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25(5):955–964. doi:10.1093/nar/25.5.955
  • Lagesen K, Hallin P, Rødland EA, et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35(9):3100–3108. doi:10.1093/nar/gkm160
  • Nawrocki EP, Burge SW, Bateman A, et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 2015;43(Database issue):D130–D137. doi:10.1093/nar/gku1063
  • Tarailo-Graovac M, Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics. 2009;25:4.10. doi:10.1002/0471250953.bi0410s25
  • Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999;27(2):573–580. doi:10.1093/nar/27.2.573
  • Bland C, Ramsey TL, Sabree F, et al. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics. 2007;8:209. doi:10.1186/1471-2105-8-209
  • Thiel T, Michalek W, Varshney R, et al. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet. 2003;106(3):411–422. doi:10.1007/s00122-002-1031-0
  • Flusberg BA, Webster DR, Lee JH, et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods. 2010;7(6):461–465. doi:10.1038/nmeth.1459
  • Zhu L, Liu Q, Liu H, et al. Mycetocola miduiensis sp. nov, a psychrotolerant bacterium isolated from Midui glacier. Int J Syst Evol Microbiol. 2013;63(Pt 7):2661–2665. doi:10.1099/ijs.0.047985-0
  • Bora N, Vancanneyt M, Gelsomino R, et al. Mycetocola reblochoni sp. nov, isolated from the surface microbial flora of Reblochon cheese. Int J Syst Evol Microbiol. 2008;58(Pt 12):2687–2693. doi:10.1099/ijs.0.64201-0
  • Doroghazi JR, Albright JC, Goering AW, et al. A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat Chem Biol. 2014;10(11):963–968. doi:10.1038/nchembio.1659
  • Tsukamoto T, Takeuchi M, Shida OM, et al. Proposal of Mycetocola gen. nov. in the family Microbacteriaceae and three new species, Mycetocola saprophilus sp. nov, Mycetocola tolaasinivorans sp. nov. and Mycetocola lacteus sp. nov, isolated from cultivated mushroom, Pleurotus ostreatus. Int J Syst Evol Microbiol. 2001;51(Pt 3):937–944. doi:10.1099/00207713-51-3-937
  • Shen L, Liu Y, Yao T, et al. Mycetocola zhadangensis sp. nov., isolated from snow. Int J Syst Evol Microbiol. 2013;63(Pt 9):3375–3378. doi:10.1099/ijs.0.047159-0
  • Luo X, Wang J, Zeng XC, et al. Mycetocola manganoxydans sp. nov, an actinobacterium isolated from the Taklamakan desert. Int J Syst Evol Microbiol. 2012;62(Pt 12):2967–2970. doi:10.1099/ijs.0.038877-0
  • Yi H, Cho YJ, Yoon SH, et al. Comparative genomics of Neisseria weaveri clarifies the taxonomy of this species and identifies genetic determinants that may be associated with virulence. FEMS Microbiol Lett. 2012;328(2):100–105. doi:10.1111/j.1574-6968.2011.02485.x
  • Tatusov RL, Fedorova ND, Jackson JD, et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003;4:41. doi:10.1186/1471-2105-4-41
  • Zhang H, Yohe T, Huang L, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46(W1):W95–W101. doi:10.1093/nar/gky418
  • Blin K, Shaw S, Steinke K, et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47(W1):W81–W87. doi:10.1093/nar/gkz310
  • Nguyen LT, Schmidt HA, von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–274. doi:10.1093/molbev/msu300
  • Goris J, Konstantinidis KT, Klappenbach JA, et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57(Pt 1):81–91. doi:10.1099/ijs.0.64483-0
  • Konstantinidis KT, Ramette A, Tiedje JM. The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci. 2006;361(1475):1929–1940. doi:10.1098/rstb.2006.1920
  • Grim CJ, Kotewicz ML, Power KA, et al. Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species-level bidirectional divergence driven by niche adaptation. BMC Genomics. 2013;14:366. doi:10.1186/1471-2164-14-366
  • Haley BJ, Grim CJ, Hasan NA, et al. Comparative genomic analysis reveals evidence of two novel Vibrio species closely related to V. cholerae. BMC Microbiol. 2010;10(1):154. doi:10.1186/1471-2180-10-154
  • Kim M, Oh HS, Park SC, et al. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014;64(Pt_2):346–351. doi:10.1099/ijs.0.059774-0
  • Lucena T, Ruvira MA, Macián MC, et al. Roseovarius albus sp. nov, a new Alphaproteobacterium isolated from the Mediterranean Sea. Antonie Van Leeuwenhoek. 2014;105(4):671–678. doi:10.1007/s10482-014-0121-8
  • Zahradník J, Nunvar J, Pařízková H, et al. Agrobacterium bohemicum sp. nov. isolated from poppy seed wastes in central Bohemia. Syst Appl Microbiol. 2018;41(3):184–190. doi:10.1016/j.syapm.2018.01.003
  • Yan J, Li Y, Han XZ, et al. Agrobacterium deltaense sp. nov, an endophytic bacteria isolated from nodule of Sesbania cannabina. Arch Microbiol. 2017;199(7):1003–1009. doi:10.1007/s00203-017-1367-0
  • Lombard V, Golaconda Ramulu H, Drula E, et al. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42(Database issue):D490–D495. doi:10.1093/nar/gkt1178
  • Ospina-Giraldo MD, Griffith JG, Laird EW, et al. The CAZyome of Phytophthora spp.: a comprehensive analysis of the gene complement coding for carbohydrate-active enzymes in species of the genus Phytophthora. BMC Genomics. 2010;11:525. doi:10.1186/1471-2164-11-525
  • Takao A, Noriko K, Shoko S, et al. Crystal structures of the catalytic domain of a novel glycohydrolase family 23 chitinase from Ralstonia sp. A-471 reveals a unique arrangement of the catalytic residues for inverting chitin hydrolysis. J Biol Chem. 2013;288(26):18696–18706. doi:10.1074/jbc.M113.462135
  • Park BH, Karpinets TV, Syed MH, et al. CAZymes analysis toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology. 2010;20(12):1574–1584. doi:10.1093/glycob/cwq106
  • Mol PC, Vermeulen CA, Wessels JGH. Diffuse extension of hyphae in stipes of Agaricus bisporus may be based on a unique wall structure. Mycol Res. 1990;94(4):480–488. doi:10.1016/S0953-7562(10)80007-3
  • Kamada T, Takemaru T, Prosser JI, et al. Right and left handed helicity of chitin microfibrils in stipe cells in Coprinus cinereus. Protoplasma. 1991;165(1-3):64–70. doi:10.1007/BF01322277
  • Fang H, Zhang W, Niu X, et al. Stipe wall extension of Flammulina velutipes could be induced by an expansin-like protein from Helix aspersa. Fungal Biol. 2014;118(1):1–11. doi:10.1016/j.funbio.2013.10.003
  • Fons M, Gomez A, Karjalainen T. Mechanisms of colonisation and colonisation resistance of the digestive tract part 2: bacteria/bacteria interactions. Microb Ecol Health Dis. 2000;12:240–246. doi:10.1080/089106000750060495
  • Perez RH, Zendo T, Sonomoto K. Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact. 2014;13(Suppl 1):S3. doi:10.1186/1475-2859-13-S1-S3