700
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Tissue expression distribution characterization of the host defense peptide dCATH in Anas platyrhynchos

, , , , , , , & show all
Pages 955-965 | Received 27 May 2020, Accepted 19 Aug 2020, Published online: 02 Sep 2020

References

  • Wang G. Human antimicrobial peptides and proteins. Pharmaceuticals (Basel). 2014;7(5):545–594.
  • Feng X, Jin S, Wang M, et al. The critical role of tryptophan in the antimicrobial activity and cell toxicity of the duck antimicrobial peptide dCATH. Front Microbiol. 2020;11:1146
  • Lai Y, Gallo RL. AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009;30(3):131–141.
  • Yount NY, Yeaman MR. Emerging themes and therapeutic prospects for anti-infective peptides. Annu Rev Pharmacol Toxicol. 2012;52:337–360.
  • Hellgren O, Ekblom R. Evolution of a cluster of innate immune genes (beta-defensins) along the ancestral lines of chicken and zebra finch. Immunome Res. 2010;6:3.
  • Huang Y, Li Y, Burt DW, et al. The duck genome and transcriptome provide insight into an avian influenza virus reservoir species. Nat Genet. 2013;45(7):776–783.
  • Lan H, Chen H, Chen LC, et al. The first report of a pelecaniformes defensin cluster: characterization of β-defensin genes in the crested ibis based on BAC libraries. Sci Rep. 2014;4:6923
  • Ma DY, Zhou CY, Zhang MY, et al. Functional analysis and induction of four novel goose (Anser cygnoides) avian β-defensins in response to salmonella enteritidis infection. Compar Immunol Microbiol Infectious Dis. 2012;35(2):197–207.
  • Li Y, Xu Q, Zhang T, et al. Host avian beta-defensin and toll-Like receptor responses of pigeons following infection with pigeon paramyxovirus type 1. Appl Environ Microbiol. 2015;81(18):6415–6424.
  • Ritonja A, Kopitar M, Jerala R, et al. Primary structure of a new cysteine proteinase inhibitor from pig leucocytes. FEBS Lett. 1989;255(2):211–214.
  • Zanetti M. The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol. 2005;7(2):179–196.
  • Cuperus T, Coorens M, Dijk AV, et al. Avian host defense peptides. Dev Comp Immunol. 2013;41(3):352–369.
  • Wassing GM, Bergman P, Lindbom L, et al. Complexity of antimicrobial peptide regulation during pathogen-host interactions. Int J Antimicrob Agents. 2015;45(5):447–454.
  • Lynn DJ, Higgs R, Gaines S, et al. Bioinformatic discovery and initial characterisation of nine novel antimicrobial peptide genes in the chicken. Immunogenetics. 2004;56(3):170–177.
  • van Dijk A, Veldhuizen EJA, van Asten AJAM, et al. CMAP27, a novel chicken cathelicidin-like antimicrobial protein. Vet Immunol Immunopathol. 2005;106(3-4):321–327.
  • Xiao Y, Cai Y, Bommineni YR, et al. Identification and functional characterization of three chicken cathelicidins with potent antimicrobial activity. J Biol Chem. 2006;281(5):2858–2867.
  • Goitsuka R, Chen CL, Benyon L, et al. Chicken cathelicidin-B1, an antimicrobial guardian at the mucosal M cell gateway. Proc Natl Acad Sci USA. 2007;104(38):15063–15068.
  • Feng F, Chen C, Zhu W, et al. Gene cloning, expression and characterization of avian cathelicidin orthologs, Cc-CATHs, from Coturnix coturnix. FEBS J. 2011;278(9):1573–1584.
  • Wang Y, Lu Z, Feng F, et al. Molecular cloning and characterization of novel cathelicidin-derived myeloid antimicrobial peptide from Phasianus colchicus. Dev Comp Immunol. 2011;35(3):314–322.
  • Gao W, Xing L, Qu P, et al. Identification of a novel cathelicidin antimicrobial peptide from ducks and determination of its functional activity and antibacterial mechanism. Sci Rep. 2015;5:17260
  • Coorens M, Scheenstra MR, Veldhuizen EJ, et al. Interspecies cathelicidin comparison reveals divergence in antimicrobial activity, TLR modulation, chemokine induction and regulation of phagocytosis. Sci Rep. 2017;7:40874
  • Carretero M, Escámez MJ, García M, et al. In vitro and in vivo wound healing-promoting activities of human cathelicidin LL-37. J Invest Dermatol. 2008;128(1):223–236.
  • van der Does AM, Beekhuizen H, Ravensbergen B, et al. LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature. J Immunol. 2010;185(3):1442–1449.
  • Wan M, van der Does AM, Tang X, et al. Antimicrobial peptide LL-37 promotes bacterial phagocytosis by human macrophages. J Leukoc Biol. 2014;95(6):971–981.
  • Cantor S, Vargas L, Rojas A O, et al. Evaluation of the antimicrobial activity of cationic peptides loaded in surface-modified nanoliposomes against foodborne bacteria. IJMS. 2019;20(3):680. pii:
  • Gao Y, Sang FF, Meng L, et al. Preparation of a novel monoclonal antibody against caprine interleukin-17A and its applications in immunofluorescence and immunohistochemistry assays. BMC Biotechnol. 2019;19(1):47.
  • van Dijk A, Veldhuizen EJA, Kalkhove SIC, et al. The beta-defensin gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-borne pathogens. Antimicrob Agents Chemother. 2007;51(3):912–922.
  • Achanta M, Sunkara LT, Dai G, et al. Tissue expression and developmental regulation of chicken cathelicidin antimicrobial peptides. J Anim Sci Biotechnol. 2012;3(1):15
  • Ma DY, Liu SW, Han ZX, et al. Expression and characterization of recombinant gallinacin-9 and gallinacin-8 in Escherichia coli. Protein Expr Purif. 2008;58(2):284–291.
  • Sugiarto H, Yu P. Identification of three novel ostricacins: an update on the phylogenetic perspective of beta-defensins. Int J Antimicrob Agents. 2006;27(3):229–235.
  • Meade KG, Higgs R, Lloyd AT, et al. Differential antimicrobial peptide gene expression patterns during early chicken embryological development. Dev Compar Immunol. 2009;33(4):516–524.
  • Bar-Shira E, Sklan D, Friedman A. Establishment of immune competence in the avian GALT during the immediate post-hatch period. Dev Comp Immunol. 2003;27(2):147–157.
  • Wells LL, Lowry VK, Deloach JR, et al. Age-dependent phagocytosis and bactericidal activities of the chicken heterophil. Dev Comp Immunol. 1998;22(1):103–109.
  • Yacoub HA, Elazzazy AM, Mahmoud MM, et al. Chicken cathelicidins as potent intrinsically disordered biocides with antimicrobial activity against infectious pathogens. Dev Comp Immunol. 2016;65:8–24.
  • Zha M, Yang J, Zhou L, et al. Preparation of mouse anti-human rotavirus VP7 monoclonal antibody and its protective effect on rotavirus infection. Exp Ther Med. 2019;18(2):1384–1390.
  • Salzman NH, Hung K, Haribhai D, et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol. 2010;11(1):76–83.
  • van Dijk A, Tersteeg-Zijderveld MHG, Tjeerdsma-van Bokhoven JLM, et al. Chicken heterophils are recruited to the site of Salmonella infection and release antibacterial mature Cathelicidin-2 upon stimulation with LPS. Mol Immunol. 2009;46(7):1517–1526.