1,516
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Puroindoline (Pina-D1 and Pinb-D1) and waxy (Wx-1) genes in Iranian bread wheat (Triticum aestivum L.) landraces

, , , &
Pages 1019-1027 | Received 13 May 2020, Accepted 20 Aug 2020, Published online: 09 Sep 2020

References

  • Food and Agriculture Organization (FAO). 2017. FAOSTAT data-base. [cited 2017 Jan 14]. Available from: http://faostat.fao.org/beta/en/.
  • Ram S, Mishra B. Biochemical basis and molecular genetics of processing and nutritional quality traits of wheat. J Plant Biochem Biotechnol. 2008;17(2):111–126.
  • Alvarez JB, Guzman C. Interspecific and intergeneric hybridization as a sourece of variation for wheat grain quality improvement. Theor Appl Genet. 2018;131(2):225–251.
  • Johansson E, Branlard G, Cuniberti M, et al. Genotypic and environment effects on wheat technological and nutritional quality. In: Igrejas G, Ikeda TM, Guzman C, editors. Wheat quality for improving processing and human health. Springer Cham; 2020:171–204.
  • Pomeranz Y, Williams PC. Wheat hardness: its genetic, structural, and biochemical background, measurement, and significance. In: Pomeranz Y, editor. Advances in cereal science and technology. St Paul (MN): American Association of Cereal Chemists; 1990; p. 471–544.
  • Gautier MF, Aleman ME, Guirao A, et al. Triticum aestivum puroindolines, two basic cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol Biol. 1994;25(1):43–57.
  • Morris CF, Rose SP. Wheat. In: Henry RJ, Kettlewell PS, editors. Cereal grain quality. New York (NY): Chapman & Hall; 1996; p. 3–54.
  • Morris CF. Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol Biol. 2002;48(5-6):633–647.
  • Gautier M-F, Cosson P, Guirao A, et al. Puroindoline genes are highly conserved in diploid ancestor wheats and related species but absent in tetraploid Triticum species. Plant Sci. 2000;153(1):81–91.
  • Souza EJ, Graybosch RA, Guttieri M. Breeding wheat for improved milling and baking quality. J Crop Prod. 2002;5(1-2):39–74.
  • Morris CF, DeMacon VL, Giroux MJ. Wheat grain hardness among chromosome 5D homozygous recombinant substitution lines using different methods of measurement. Cereal Chem. 1999;76(2):249–252.
  • Law CN, Young CF, Brown JWS, et al. The study of grain-protein control in wheat using whole-chromosome substitution lines. In: Seed protein improvement by nuclear techniques. Vienna: International Atomic Energy Agency; 1978; p. 483–502.
  • Chantret N, Salse J, Sabot F, et al. Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell. 2005;17(4):1033–1045.
  • Bhave M, Morris C. Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Mol Biol. 2008;66(3):205–e219.
  • Giroux MJ, Morris CF. A glycine to serine change in puroindoline-b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor Appl Genet. 1997;95:857–864.
  • Chang C, Zhang H, Xu J, et al. Identification of allelic variations of puroindoline genes controlling grain hardness in wheat using a modified denaturing PAGE. Euphytica. 2006;152(2):225–234.
  • Morris CF, Bhave M. Reconciliation of D-genome puroindoline allele designations with current DNA sequence data. J Cereal Sci. 2008;48(2):277–287.
  • Morris CF, Lillemo M, Simeone MC, et al. Prevalence of puroindoline grain hardness genotypes among historically significant North American spring and winter wheats. Crop Sci. 2001;41(1):218–228.
  • Chen F, Yu Y, Xia X, et al. Prevalence of a novel puroindoline b allele in Yunnan endemic wheats (Triticum aestivum ssp. yunnanense King). Euphytica. 2007;156(1-2):39–46.
  • Chen F, Li H, Li X, et al. Alveograph and Mixolab parameters associated with Puroindoline-D1 genes in Chinese winter wheats. J Sci Food Agric. 2013;93(10):2541–2548.
  • Eagles HA, Cane K, Eastwood RF, et al. Contributions of glutenins and puroindoline genes to grain quality traits in Southern Australian wheat breeding programs. Aust J Agric Res. 2006;57(2):179–186.
  • Giroux MJ, Talbert L, Habernicht DK, et al. Association of puroindoline sequence type and grain hardness in hard red spring wheat. Crop Sci. 2000;40(2):370–374.
  • Martin JM, Frohberg RC, Morris CF, et al. Milling and bread baking traits associated with puroindoline sequence type in hard red spring wheat. Crop Sci. 2001;41(1):228–234.
  • Lillemo M, Chen F, Xia X, et al. Puroindoline grain hardness alleles in CIMMYT bread wheat germplasm. J Cereal Sci. 2006;44(1):86–92.
  • James MG, Denyer K, Myers AM. Starch synthesis in the cereal endosperm. Curr Opin Plant Biol. 2003;6(3):215–222.
  • Sestili F, Botticella E, Bedo Z, et al. Production of novel allelic variation for genes involved in starch biosynthesis through mutagenesis. Mol Breeding. 2010;25(1):145–154.
  • Fredriksson H, Silverio J, Andersson R, et al. The influence of amylose and amylopectin characteristics on gelatinization and retrogradation properties of different starches. Carbohydr Polym. 1998;35(3-4):119–134.
  • Zeng M, Morris CF, Batey IL, et al. Sources of variation for starch gelatinization, pasting, and gelation properties in wheat. Cereal Chem. 1997;74(1):63–71.
  • Baldwin PM. Starch granule-associated proteins and polypeptides: a review. Starch/Stärke. 2001;53(10):475–503.
  • Yu H, Yang Y, Chen XY, et al. Comparison of endosperm amyloplast development and degration in waxy and non-waxy wheat. Cereal Res Commun. 2018; 46(2):333–343.
  • Morell MK, Rahman S, Regina A, et al. Wheat starch biosynthesis. Euphytica. 2001;119(1/2):55–58.
  • Chao S, Sharp PJ, Worland AJ, et al. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet. 1989;78(4):495–504.
  • Ainsworth C, Clark J, Balsdon J. Expression, organisation and structure of the genes encoding the waxy protein (granule-bound starch synthase) in wheat . Plant Mol Biol. 1993;22(1):67–82.
  • Yamamori M, Nakamura T, Endo TR, et al. Waxy protein deficiency and chromosomal location of coding genes in common wheat. Theor Appl Genet. 1994;89(2-3):179–184.
  • Guzmán C, Alvarez JB. Molecular characterization of a novel waxy allele (Wx-Au1a) from Triticum urartu Thum. ex Gandil. Genet Resour Crop Evol. 2012;59(6):971–979.
  • Ortega R, Alvarez JB, Guzmán C. Characterization of the Wx gene in diploid Aegilops species and its potential use in wheat breeding. Genet Resour Crop Evol. 2014;61(2):369–382.
  • Guzmán C, Ortega R, Yamamori M, et al. Molecular characterization of two novel null waxy alleles in Mexican bread wheat landraces. J Cereal Sci. 2015; 62:8–14.
  • Ciaffi M, Dominici L, Lafiandra D, et al. Seed storage protein of wild wheat progenitors and their relationships with technological properties. Hereditas. 2008;116(3):315–322.
  • Feldman M, Sears ER. The wild gene resources of wheat. Sci Am. 1981;244(1):102–112.
  • Nevo E, Payne PI. Wheat storage protein diversity of HWM glutenin subunits in wild emmer from Israel. 1. Geographical patterns and ecogeographical predicabality. Theoret Appl Genet. 1987;74(6):827–836.
  • Kokten K, Akcura M. Mineral concentrations ofgrain of bread wheat landraces originated from eastern Anatolia of Turky. Prog Nutr. 2018; 20:119–126.
  • Li X, Li Y, Zhang M, et al. Diversity of Puroindoline genes and their association with kernel hardness in Chinese wheat cultivars and landraces. Mol Breeding. 2019;39(4). Doi:10.1007/s11032-019-0967-6.
  • American Association of Cereal Chemists. Approved methods of the AACC. St. Paul, MN: AACC International; 2010.
  • American Association of Cereal. Chemists. Approved Methods of the AACC. St. Paul, MN: Association of Cereal Chemists, 2000.
  • Dreisigacker S, Sehgal D, Reyes Jaimez AE, et al. CIMMYT wheat molecular genetics: laboratory protocols and applications to wheat breeding. Mexico: CIMMYT; 2016.
  • Liu L, He Z, Yan J, et al. Allelic variation at the Glu-1 and Glu-3 loci, presence of the 1B.1R translocation, and their effects on mixoEgraphic properties in Chinese bread wheats. Euphytica. 2005;142(3):197–204.
  • McLauchlan A, Ogbonnaya FC, Hollingsworth B, et al. Development of robust PCR-based DNA markers for each homoeo-allele of granule-bound starch synthase and their application in wheat breeding programs. Aust J Agric Res. 2001;52(12):1409–1416.
  • Saito M, Vrinten P, Ishikawa G, et al. A novel codominant marker for selection of the null Wx-B1 allele in wheat breeding programs. Mol Breeding. 2009;23(2):209–217.
  • Semagn K, Babu R, Hearne S, et al. Single nucleotide polymorphism genotyping using kompetitive allele specific PCR (KASP):overview of the technology and its application in crop improvement. Mol Breeding. 2014;33(1):1–14.
  • Giroux M, Morris CF. Wheat grain hardness results from highly conserved mutations in the friabilin components Puroindoline a and b. Proc Natl Acad Sci USA. 1998; 95(11):6262–6266.
  • Boehm JD, Jr, Ibba MI, Kiszonas AM, et al. End-use quality of CIMMYT-derived soft-kernel durum wheat germplasm: I Grain, milling and soft wheat quality. Crop Sci. 2017;57(3):1475–1484.
  • Murray JC, Kiszonas AM, Morris CF. Influence of soft kernel texture on the flour, water absorption, rheology and baking quality of durum wheat. Cereal Chem. 2017;94(2):215–222.
  • Lullien-Pellerin V, Haraszi R, Anderson RS, et al. Understanding the mechanics of wheat grain fractionation and the impact of puroindolines on milling and product quality. In: Igrejas G, Ikeda TM, Guzman C, editor. Wheat quality for improving processing and human health. 2020.
  • Wang D, Zhang K, Dong L, et al. Molecular genetic and genomic analysis of wheat milling and end-use traits in China: progress and perspectives. Crop J. 2018; 6(1):68–81.
  • Ayala M, Guzman C, Peña RJ, et al. Genetic diversity and molecular characterization of puroindoline genes (Pina-D1 and Pinb-D1) in bread wheat landraces from Andalusia (Southern Spain). J Cereal Sci. 2016;71:61–65.
  • Ma X, Sajjad M, Wang J, et al. Diversity, distribution of puroindoline genes and their effect on kernel hardness in a diverse panel of Chinese wheat germplasm. BMC Plant Biol. 2017;17(1):158.
  • Xia LQ, Chen F, He ZH, et al. Occurrence of puroindoline alleles in Chinese winter wheats. Cereal Chem. 2005;82(1):38–43.
  • Cane K, Spackman M, Eagles H. Puroindoline genes and their effects on grain quality traits in southern Australian wheat cultivars. Aust J Agric Res. 2004;55(1):89–95.
  • Ikeda TM, Ohnishi N, Nagamine T, et al. Identification of new puroindoline genotypes and their relationship to flour texture among wheat cultivars. J Cereal Sci. 2005;41(1):1–6.
  • Chen F, He Z, Xia XC, et al. Molecular and biochemical characterization of puroindoline a and b alleles in Chinese landraces and historical cultivars. Theor Appl Genet. 2006;112(3):400–409.
  • Pickering PA, Bhave M. Comprehensive analysis of Australian hard wheat cultivars shows limited puroindoline allele diversity. Plant Sci. 2007;172(2):371–379.
  • Rasheed A, Wen W, Gao F, et al. Development and validation of KASP assays for functional genes underpinning key economic traits in wheat. Theor Appl Genet. 2016;129(10):1843–1860.
  • Ayala M, Guzman C, Alvarez JB, et al. Characterization of genetic diversity of puroindoline genes in Mexican wheat landraces. Euphytica. 2013;190(1):53–63.
  • Huebner FR, Gaines CS. Relation between wheat kernel hardness, environment, and gliadin composition. Cereal Chem. 1992; 69:148–151.
  • Peterson CJ, Graybosch RA, Baenziger PS, et al. Genotype and environment effects on quality characteristics of hard erd winter wheat. Crop Sci. 1992;32(1):98–103.
  • Turnbull KM, Rahman S. Endosperm texture in wheat. J Cereal Sci. 2002;36(3):327–337.
  • Surma M, Adamski T, Banaszak Z, et al. Effect of genotype, environment and their interaction on quality parameters of wheat breeding lines of diverse grain hardness. Plant Prod Sci. 2012; 15(3):192–203.
  • Pomeranz Y, Peterson CJ, Mattern PJ. Hardness of winter wheats grown under widely different climatic conditions. Cereal Chem. 1985; 62:463–467.
  • Oury FX, Lasme P, Michelet C, et al. Relationships between wheat grain physical characteristics studied through near-isogenic lines with distinct puroindoline-b allele. Theor Appl Genet. 2015;128(5):913–929.
  • Igrejas G, Leroy P, Charmet G, et al. Mapping QTLs for grain hardness and puroindoline content in wheat (Triticum aestivum L.). Theor Appl Genet. 2002;106(1):19–27.
  • Tsilo TJ, Simsek S, Ohm JB, et al. Quantitative trait loci influencing endosperm texture, dough-mixing strength, and bread-making properties of the hard red spring wheat breeding lines . Genome. 2011;54(6):460–470.
  • Dubreil L, Méliande S, Chiron H, et al. Effect of puroindolines on the bread making properties of wheat flour. Cereal Chem. 1998;75(2):222–229.
  • Igrejas G, Gaborit T, Oury FX, et al. Geneticand environmental effects on puroindoline-a and puroindoline-b content and their relationship to technological properties in French bread wheats. J Cereal Sci. 2001;34(1):37–47.
  • Mikulikova D. The effect of friabilin on wheat grain hardness: a review. Czech J Genet Plant Breed. 2018;43(2):35–43.
  • Symes KJ. The inheritance of grain hardness in wheat as measured by the particle size index. Aust J Agric Res. 1965;16(2):113–123.
  • Liang D, Tang JW, Pena RJ, et al. Characterization of CIMMYT bread wheats for high- and low- molecular weight glutenin subunits and other quality-related genes with SDS-PAGE, RP-HPLC and molecular markers. Euphytica. 2010;172(2):235–250.
  • Kim W, Johnson JW, Graybosch RA, et al. Physicochemical properties and end-use quality of wheat starch as a function of waxy protein alleles. J Cereal Sci. 2003;37(2):195–204.
  • Yamamori M, Quynh NT. Differential effects of Wx-A1,-B1 and-D1 protein deficiencies on apparent amylose content and starch pasting properties in common wheat. Theor Appl Genet. 2000;100(1):32–38.
  • Miura H, Sugawara A. Dosage effects of the three Wx genes on amylose synthesis in wheat endosperm. Theor Appl Genet. 1996;93(7):1066–1070.
  • Guzman C, Alvarez JB. Wheat waxy proteins: polymorphism, molecular characterization and effects on starch properties. Theor Appl Genet. 2016; 129(1):1–16.
  • Shan XY, Clayshulte SR, Haley SD, et al. Variation for glutenin and waxy alleles in the US hard winter wheat germplasm. J Cereal Sci. 2007;45(2):199–208.
  • Liu YX, Li W, Chen HP, et al. Variation for glutenin and waxy alleles and their effect on quality properties in Sichuan wheat landraces. J Plant Sci. 2008;3(4):266–276.
  • Nakamura T, Vrinten P, Saito M, et al. Rapid classification of partial waxy wheats using PCR-based markers. Genome. 2002;45(6):1150–1156.
  • Li S, Zhong X, Zhang X, et al. Production of waxy tetraploid wheat (Triticum turgidum durum L.) by EMS mutagenesis. Genet Resour Crop Evol. 2020;67(2):433–443.
  • Takata K, Ikeda TM, Yanaka M, et al. Comparison of five puroindoline alleles on grain hardness and flour properties using near isogenic wheat lines. Breed Sci. 2010;60(3):228–232.