1,188
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Understanding the chemical foundation and genetic mechanism of the black grain trait in quinoa by integrating metabolome and transcriptome analyses

, , , , &
Pages 1095-1103 | Received 13 Jul 2020, Accepted 07 Sep 2020, Published online: 17 Sep 2020

References

  • Capparelli A, Pochettino ML, Lema V, et al. The contribution of ethnobotany and experimental archaeology to interpretation of ancient food processing: methodological proposals based on the discussion of several case studies on Prosopis spp. Chenopodium spp. and Cucurbita spp. from Argentina. Veget Hist Archaeobot. 2015;24(1):151–163.
  • Fuentes FF, Paredes-Gonzalez X. Nutraceutical perspectives of quinoa: biological properties and functional applications. In: Didier Bazile, Daniel Bertero, Carlos Nieto, editors. The state of the art report on quinoa around the world in 2013. Rome, Italy: Regional Office for Latin America and Caribbean at Food and Agriculture Organization (FAO); 2015. p. 286–299.
  • Vega-Galvez A, Martin RS, Sanders M, et al. Characteristics and mathematical modeling of convective drying of quinoa (Chenopodium quinoa Willd.): influence of temperature on the kinetic parameters. J Food Process Preserv. 2010;34:945–963.
  • Hirose Y, Fujita T, Ishii T, et al. Antioxidative properties and flavonoid composition of Chenopodium quinoa seeds cultivated in Japan. Food Chem. 2010;119(4):1300–1306.
  • Repo-Carrasco-Valencia R, Hellstroem JK, Pihlava JM, et al. Flavonoids and other phenolic compounds in Andean indigenous grains: quinoa (Chenopodium quinoa), kafiiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chem. 2010;120(1):128–133.
  • Tang Y, Li XH, Zhang B, et al. Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chem. 2015;166:380–388.
  • Gómez-Pando LR, Álvarez-Castro R, Eguiluz-de la Barra A. Short communication: effect of salt stress on peruvian germplasm of Chenopodium quinoa Willd.: a promising crop. J Agron Crop Sci. 2010;196(5):391–396.
  • Abderrahim F, Huanatico E, Segura R, et al. Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food Chem. 2015;183:83–90.
  • Escribano J, Cabanes J, Jiménez-Atiénzar M, et al. Characterization of betalains, saponins and antioxidant power in differently colored quinoa (Chenopodium quinoa) varieties. Food Chem. 2017;234:285–294.
  • Polturak G, Heinig U, Grossman N, et al. Transcriptome and metabolic profiling provides insights into betalain biosynthesis and evolution in Mirabilis jalapa. Mol Plant. 2018;11:189–204.
  • Gandia-Herrero F, Garcia-Carmona F. Characterization of recombinant Beta vulgaris 4,5-DOPA- extradiol-dioxygenase active in the biosynthesis of betalains. Planta. 2012;236:91–100.
  • Hatlestad GJ, Akhavan NA, Sunnadeniya RM, et al. The beet Y locus encodes an anthocyanin MYB-like protein that activates the betalain red pigment pathway. Nat Genet. 2015;47(1):92–96.
  • Hatlestad GJ, Sunnadeniya RM, Akhavan NA, et al. The beet R locus encodes a new cytochrome P450 required for red betalain production. Nat Genet. 2012;44(7):816–820.
  • Polturak G, Breitel D, Grossman N, et al. Elucidation of the first committed step in betalain biosynthesis enables the heterologous engineering of betalain pigments in plants. New Phytol. 2016;210(1):269–283.
  • Sasaki N, Wada K, Koda T, et al. Isolation and characterization of cDNAs encoding an enzyme with glucosyltransferase activity for cyclo-DOPA from four o'clocks and feather cockscombs. Plant Cell Physiol. 2005;46(4):666–670.
  • Sullivan ML. Beyond brown: polyphenol oxidases as enzymes of plant specialized metabolism. Front Plant Sci. 2014;5:783.
  • Sunnadeniya R, Bean A, Brown M, et al. Tyrosine hydroxylation in betalain pigment biosynthesis is performed by cytochrome P450 enzymes in beets (Beta vulgaris). PLoS One. 2016;11(2):e0149417.
  • Vogt T, Ibdah M, Schmidt J, et al. Light-induced betacyanin and flavonol accumulation in bladder cells of Mesembryanthemum crystallinum. Phytochemistry. 1999;52(4):583–592.
  • Vogt T, Zimmermann E, Grimm R, et al. Are the characteristics of betanidin glucosyltransferases from cell-suspension cultures of Dorotheanthus bellidiformis indicative of their phylogenetic relationship with flavonoid glucosyltransferases. Planta. 1997;203(3):349–361.
  • Bartłomiej S, Justyna RK, Ewa N. Bioactive compounds in cerealgrains-Occurrence, structure, technological significance and nutritional benefits – a review. Food Sci Technol Int. 2012;18(6):559–568.
  • Petroni K, Tonelli C. Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci. 2011;181(3):219–229.
  • Sarma AD, Sharma R. Anthocyanin-DNA copigmentation complex: mutual protection against oxidative damage. Phytochemistry. 1999;52(7):1313–1318.
  • Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001;126(2):485–493.
  • Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 2005;10(5):236–242.
  • Alseekh S, Tohge T, Wendenberg R, et al. Identification and mode of inheritance of quantitative trait loci for secondary metabolite abundance in tomato. Plant Cell. 2015;27(3):485–512.
  • Chen W, Gao Y, Xie W, et al. Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat Genet. 2014;46(7):714–721.
  • Chen W, Gong L, Guo ZL, et al. A novel integrated method for large-scale detection identification and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol Plant. 2013;6(6):1769–1780.
  • Dong X, Chen W, Wang W, et al. Comprehensive profiling and natural variation of flavonoids in rice. J Integr Plant Biol. 2014;56(9):876–886.
  • Shi Z, Wei F, Wan R, et al. Impact of nitrogen fertilizer levels on metabolite profiling of the Lyciumbarbarum L. Fruit. Molecules. 2019;24(21):3879.
  • Wang F, Chen L, Chen HP, et al. Analysis of flavonoid metabolites in citrus peels (Citrus reticulata “Dahongpao”) using UPLC-ESI-MS/MS. Molecules. 2019;24(15):2680.
  • Kumar R, Ichihashi Y, Kimura S, et al. A high-throughput method for Illumina RNA-seq library preparation. Front Plant Sci. 2012;3:202.
  • Li YZ, Luo X, Wu CY, et al. Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in red and green walnut (Juglansregia L.). Molecules. 2017;23(1):25.
  • Cao D, Ye GJ, Zong Y, et al. AetMYC1, the candidate gene controlling the red coleoptile trait in Aegilops tauschii Coss. accession As77. Molecules. 2017;22(12):2259.
  • Cao D, Fan JQ, Xi XY, et al. Transcriptome analysis identifies key genes responsible for red coleoptiles in Triticum monococcum. Molecules. 2019;24(5):932.
  • Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evolut. 2011;28(10):2731–2739.
  • Paśko P, Bartoń H, Zagrodzki P, et al. Anthocyanins, total polyphenols and antioxidant activity in amaranth and quinoa seeds and sprouts during their growth. Food Chem. 2009;115(3):994–998.
  • Gunaratne A, Wu K, Li DQ, et al. Antioxidant activity and nutritional quality of traditional red-grained rice varieties containing proanthocyanidins. Food Chem. 2013;138(2-3):1153–1161.
  • Zuluaga D, Gonzali S, Loreti E, et al. Arabidopsis thaliana MYB75/PAP1 transcription factor induces anthocyanin production in transgenic tomato plants. Funct Plant Biol. 2008;35(7):606–618.
  • Urao T, Yamaguchi-Shinozaki K, Mitsukawa N, et al. Molecular cloning and characterization of a gene that encodes a MYC-related protein in Arabidopsis. Plant Mol Biol. 1996;32(3):571–576.
  • Baudry A, Heim MA, Dubreucq B, et al. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J. 2004;39(3):366–380.
  • Liu XJ, Lu Y, Yan ML, et al. Genome-wide identification, localization, and expression analysis of proanthocyanidin-associated genes in Brassica. Front Plant Sci. 2016;7:1831.