999
Views
1
CrossRef citations to date
0
Altmetric
Article

Contribution of photosynthetic- and yield-related traits towards grain yield in wheat at the individual quantitative trait locus level

ORCID Icon, , , , &
Pages 1188-1197 | Received 01 Apr 2020, Accepted 20 Sep 2020, Published online: 06 Oct 2020

References

  • Food and Agriculture Organisation of the United Nations. FAOSTAT. Available from: http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor
  • Curtis T, Halford N. Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Ann Appl Biol. 2014;164(3):354–372.
  • Ray DK, Mueller ND, West PC, et al. Yield trends are insufficient to double global crop production by 2050. PLoS One. 2013;8(6):e66428.
  • Zhang L, Liu D, Guo X, et al. Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. J Integr Plant Biol. 2010;52(11):996–1007.
  • Zhang L, Zhao YL, Gao LF, et al. TaCKX6-D1, the ortholog of rice OsCKX2, is associated with grain weight in hexaploid wheat. New Phytol. 2012;195(3):574–584.
  • Zheng J, Liu H, Wang Y, et al. TEF-7A, a transcript elongation factor gene, influences yield-related traits in bread wheat (Triticum aestivum L.). J Exp Bot. 2014;65(18):5351–5365.
  • Hou J, Jiang Q, Hao C, et al. Global selection on sucrose synthase haplotypes during a century of wheat breeding. Plant Physiol. 2014;164(4):1918–1929.
  • Jiang Y, Jiang Q, Hao C, et al. A yield-associated gene TaCWI, in wheat: its function, selection and evolution in global breeding revealed by haplotype analysis. Theor Appl Genet. 2015;128(1):131–143.
  • Simmonds J, Scott P, Brinton J, et al. A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theor Appl Genet. 2016;129(6):1099–1112.
  • Hu MJ, Zhang HP, Cao JJ, et al. Characterization of an IAA-glucose hydrolase gene TaTGW6 associated with grain weight in common wheat (Triticum aestivum L.). Mol Breed. 2016;36(3):25.
  • Ma L, Li T, Hao C, et al. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield. Plant Biotechnol J. 2016;14(5):1269–1280.
  • Würschum T, Langer SM, Longin CFH, et al. A three-component system incorporating Ppd-D1, copy number variation at Ppd-B1, and numerous small-effect quantitative trait loci facilitates adaptation of heading time in winter wheat cultivars of worldwide origin. Plant Cell Environ. 2018;41(6):1407–1416.
  • Yang DL, Jing RL, Chang XP, et al. Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum). J Integr Plant Biol. 2007;49(5):646–654.
  • Zhang ZB, Xu P, Jia JZ, et al. Quantitative trait loci for leaf chlorophyll fluorescence traits in wheat. Aust J Crop Sci. 2010;4:571–579.
  • Xu YF, Li SS, Li LH, et al. QTL mapping for yield and photosynthetic related traits under different water regimes in wheat. Mol Breed. 2017;37(3):34.
  • Evans LT. 1975. Crop physiology: some case histories. London: Cambridge University Press.
  • Gebbing T, Schnyder H. Pre-anthesis reserve utilization for protein and carbohydrate synthesis in grains of wheat. Plant Physiol. 1999;121(3):871–878.
  • Tambussi EA, Bort J, Guiamet JJ, et al. The photosynthetic role of ears in C3 cereals: metabolism, water use efficiency and contribution to grain yield. Crit Rev Plant Sci. 2007;26(1):1–16.
  • Wen YX, Zhu J. Multivariable conditional analysis for complex trait and its components. Yi Chuan Xue Bao. 2005;32(3):289–296.
  • Cui F, Li J, Ding A, et al. Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor Appl Genet. 2011;122(8):1517–1536.
  • Cui F, Zhao C, Li J, et al. Kernel weight per spike: what contributes to it at the individual QTL level? Mol Breed. 2013;31(2):265–278.
  • Ding AM, Li J, Cui F, et al. Mapping QTLs for yield related traits using two associated RIL populations of wheat. Acta Agron Sin. 2011;37:1511–1524.
  • Wang L, Cui F, Ding A, et al. Length of internode and spike: how do they contribute to plant height of wheat at an individual QTL level? Cereal Res Commun. 2013;41(1):54–65.
  • Yu M, Chen G-Y, Pu Z-E, et al. Quantitative trait locus mapping for growth duration and its timing components in wheat. Mol Breed. 2015;35(1):44.
  • Yu M, Mao SL, Hou DB, et al. Analysis of contributors to grain yield in wheat at the individual quantitative trait locus level. Plant Breed. 2018;137(1):35–49.
  • Deynze AV, Dubcovsky J, Gill K, et al. Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome. 1995;38(1):45–59.
  • Zhu J. Mixed model approaches for estimating genetic variances and covariances. J Biomath. 1992;1:1–11.
  • Holland JB, Nyquist WE, Cervantes-Martínez CT. Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev. 2003;22:9–112.
  • Holland JB. Estimating genotypic correlations and their standard errors using multivariate restricted maximum likelihood estimation with SAS Proc MIXED. Crop Sci. 2006;46(2):642–654.
  • Chen G, Zhu J. QGAStation 1.0. Software for the classical quantitative genetics. Hangzhou: Institute of Bioinformatics, Zhejiang University; 2003.
  • Song Q, Shi J, Singh S, et al. Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet. 2005;110(3):550–560.
  • Users’ Manual of QTL IciMapping Version 4.0. 2014. The Quantitative Genetics Group, Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China, and Genetic Resources Program, International Maize and Wheat Improvement Center (CIMMYT), Apdo.
  • Sourdille P, Singh S, Cadalen T, et al. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genom. 2004;4(1):12–25.
  • Yu M, Mao S-L, Chen G-Y, et al. QTLs for uppermost internode and spike length in two wheat RIL populations and their affect upon plant height at an individual QTL level. Euphytica. 2014;200(1):95–108.
  • Zhang H, Chen J, Li R, et al. Conditional QTL mapping of three yield components in common wheat (Triticum aestivum L.). Crop J. 2016;4(3):220–228.
  • Mason RE, Hays DB, Mondal S, et al. QTL for yield, yield components and canopy temperature depression in wheat under late sown field conditions. Euphytica. 2013;194(2):243–259.
  • Naruoka Y, Talbert L, Lanning S, et al. Identification of quantitative trait loci for productive tiller number and its relationship to agronomic traits in spring wheat. Theor Appl Genet. 2011;123(6):1043–1053.
  • Soriano JM, Malosetti M, Roselló M, et al. Dissecting the old Mediterranean durum wheat genetic architecture for phenology, biomass and yield formation by association mapping and QTL meta-analysis. PLoS One. 2017;12(5):e0178290.
  • Somers DJ, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet. 2004;109(6):1105–1114.
  • Liang Y, Zhang K, Zhao L, et al. Identification of chromosome regions conferring dry matter accumulation and photosynthesis in wheat (Triticum aestivum L.). Euphytica. 2010;171(1):145–156.
  • Kumar N, Kulwal P, Balyan H, et al. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed. 2007;19(2):163–177.
  • Sukumaran S, Dreisigacker S, Lopes M, et al. Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor Appl Genet. 2015;128(2):353–363.
  • Golabadi M, Arzani A, Maibody SM, et al. Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat. Euphytica. 2011;177(2):207–221.
  • Ma Y, Mao S-L, Chen G-Y, et al. QTLs for waterlogging tolerance at germination and seedling stages in population of recombinant inbred lines derived from a cross between synthetic and cultivated wheat genotypes. J Integr Agric. 2014;13(1):31–39.
  • Graziani M, Maccaferri M, Royo C, et al. QTL dissection of yield components and morpho-physiological traits in a durum wheat elite population tested in contrasting thermo-pluviometric conditions. Crop Pasture Sci. 2014;65(1):80–95.
  • Wang S, Jia S, Sun D, et al. Genetic basis of traits related to stomatal conductance in wheat cultivars in response to drought stress. Photosynthetica. 2015;53(2):299–305.
  • Barbour MM, Bachmann S, Bansal U, et al. Genetic control of mesophyll conductance in common wheat. New Phytol. 2016;209(2):461–465.
  • Zhang KP, Zhao L, Hai Y, et al. QTL mapping for adult-plant resistance to powdery mildew, lodging resistance, and internode length below spike in wheat. Acta Agron Sin. 2008;34(8):1350–1357.
  • Yu M, Liu ZH, Yang B, et al. The contribution of photosynthesis traits and plant height components to plant height in wheat at the individual quantitative trait locus level. Sci Rep. 2020;10(1):1–10.
  • Maccaferri M, Zhang J, Bulli P, et al. A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3. 2015;5:449–465.
  • Zhang B, Chen HW, Mu RL, et al. NIMA-related kinase NEK6 affects plant growth and stress response in Arabidopsis. Plant J. 2011;68(5):830–843.
  • Motose H, Hamada T, Yoshimoto K, et al. NIMA-related kinases 6, 4, and 5 interact with each other to regulate microtubule organization during epidermal cell expansion in Arabidopsis thaliana. Plant J. 2011;67(6):993–1005.
  • Kruszka K, Pacak A, Swida-Barteczka A, et al. Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. J Exp Bot. 2014;65(20):6123–6135.
  • Finnie C, Andersen C, Borch J, et al. 14-3-3 Proteins are involved in an epidermis-specific response to the barley powdery mildew fungus. Plant Mol Biol. 2002;49(2):137–147.
  • Wang Y, Noguchi K, Ono N, et al. Overexpression of plasma membrane H+-ATPase in guard cells promotes light-induced stomatal opening and enhances plant growth. Proc Natl Acad Sci USA. 2014;111(1):533–538.
  • Thambugala D, Brûlé-Babel AL, Blackwell BA, et al. Genetic analyses of native Fusarium head blight resistance in two spring wheat populations identifies QTL near the B1, Ppd-D1, Rht-1, Vrn-1, Fhb1, Fhb2, and Fhb5 loci. Theor Appl Genet. 2020;133(10):2775–2722.