1,721
Views
4
CrossRef citations to date
0
Altmetric
Article

Knockout of the DAS gene increases S-adenosylmethionine production in Komagataella phaffii

, , &
Pages 29-36 | Received 13 Jul 2020, Accepted 09 Oct 2020, Published online: 04 Nov 2020

References

  • Fontecave M, Atta M, Mulliez E. S-adenosylmethionine: nothing goes to waste. Trends Biochem Sci. 2004;29(5):243–249.
  • Niu W, Cao S, Yang M, et al. Enzymatic synthesis of S-adenosylmethionine using immobilized methionine adenosyltransferase variants on the 50-mM scale. Catalysts. 2017;7(8):238.
  • Yin C, Zheng T, Chang X. Biosynthesis of S-adenosylmethionine by magnetically immobilized Escherichia coli cells highly expressing a methionine adenosyltransferase variant. Molecules. 2017;22(8):1365.
  • Ravi Kant H, Balamurali M, Meenakshisundaram S. Enhancing precursors availability in Pichia pastoris for the overproduction of S-adenosyl-l-methionine employing molecular strategies with process tuning. J Biotechnol. 2014;188:112–121.
  • Zhao W, Hang B, Zhu X, et al. Improving the productivity of S-adenosyl-l-methionine by metabolic engineering in an industrial Saccharomyces cerevisiae strain. J Biotechnol. 2016;236:64–70.
  • Geier M, Brandner C, Strohmeier GA, et al. Engineering Pichia pastoris for improved NADH regeneration: a novel chassis strain for whole-cell catalysis. Beilstein J Org Chem. 2015;11:1741–1748.
  • Zhang JG, Wang XD, Su EZ, et al. A new fermentation strategy for S-adenosylmethionine production in recombinant Pichia pastoris. Biochem Eng J. 2008;41(1):74–78.
  • Wang D, Li D, Zhang G, et al. Disruption of por1 gene in Candida utilis improves co-production of S-adenosylmethionine and glutathione. J Biotechnol. 2019;290:16–23.
  • Han G, Hu X, Wang X. Overexpression of methionine adenosyltransferase in Corynebacterium glutamicum for production of S-adenosyl-l-methionine. Biotechnol Appl Biochem. 2016;63(5):679–689.
  • Chen H, Wang Z, Cai H, et al. Progress in the microbial production of S-adenosyl-l-methionine. World J Microbiol Biotechnol. 2016;32(9):153.
  • Chu J, Qian J, Zhuang Y, et al. Progress in the research of S-adenosyl-l-methionine production. Appl Microbiol Biotechnol. 2013;97(1):41–49.
  • Zhu T, Sun H, Wang M, et al. Pichia pastoris as a versatile cell factory for the production of industrial enzymes and chemicals: current status and future perspectives. Biotechnol J. 2019;14(6):13.
  • Fischer J, Glieder A. Current advances in engineering tools for Pichia pastoris. Curr Opin Biotechnol. 2019;59:175–181.
  • Vogl T, Hartner FS, Glieder A. New opportunities by synthetic biology for biopharmaceutical production in Pichia pastoris. Curr Opin Biotechnol. 2013;24(6):1094–1101.
  • Pena D, Gasser B, Zanghellini J, et al. Metabolic engineering of Pichia pastoris. Metab Eng. 2018;50:2–15.
  • Zhang JG, Wang XD, Zheng Y, et al. Enhancing yield of S-adenosylmethionine in Pichia pastoris by controlling NH4+ concentration. Bioprocess Biosyst Eng. 2008;31(2):63–67.
  • Zhang JG, Wang XD, Zhang JN, et al. Oxygen vectors used for S-adenosylmethionine production in recombinant Pichia pastoris with sorbitol as supplemental carbon source. J Biosci Bioeng. 2008;105(4):335–340.
  • Hu X, Chu J, Zhang S, et al. A novel feeding strategy during the production phase for enhancing the enzymatic synthesis of S-adenosyl-l-methionine by methylotrophic Pichia pastoris. Enzyme Microb Technol. 2007;40(4):669–674.
  • Hu H, Qian J, Chu J, et al. Optimization of L-methionine feeding strategy for improving S-adenosyl-L-methionine production by methionine adenosyltransferase overexpressed Pichia pastoris. Appl Microbiol Biotechnol. 2009;83(6):1105–1114.
  • Hara KY, Kondo A. ATP regulation in bioproduction. Microb Cell Fact. 2015;14(1):198
  • Higgins DR, Cregg JM. Pichia protocols. Vol. 103. Totowa, New Jersey: Springer; 1998.
  • Green MR, Sambrook J. Molecular cloning: A laboratory manual. 4th ed. New Jersey: Cold Spring Harbor Laboratory Press; 2012.
  • Shiozaki S, Shimizu S, Yamada H. Unusual intracellular accumulation of S-Adenosyl-L-methionine by microorganisms. Agric Biol Chem. 1984;48(9):2293–2300.
  • Hohenblum H, Borth N, Mattanovich D. Assessing viability and cell-associated product of recombinant protein producing Pichia pastoris with flow cytometry. J Biotechnol. 2003;102(3):281–290.
  • Liu WC, Gong T, Wang QH, et al. Scaling-up Fermentation of Pichia pastoris to demonstration-scale using new methanol-feeding strategy and increased air pressure instead of pure oxygen supplement. Sci Rep. 2016;6(1):18439
  • Chen Y, Xu D, Fan L, et al. Manipulating multi-system of NADPH regulation in Escherichia coli for enhanced S-adenosylmethionine production. RSC Adv. 2015;5(51):41103–41111.
  • Chen Y, Lou S, Fan L, et al. Control of ATP concentration in Escherichia coli using synthetic small regulatory RNAs for enhanced S-adenosylmethionine production. FEMS Microbiol Lett. 2015;362(15):fnv115.
  • Chen Y, Zhou H, Wang M, et al. Control of ATP concentration in Escherichia coli using an ATP-sensing riboswitch for enhanced S-adenosylmethionine production. RSC Adv. 2017;7(36):22409–22414.