928
Views
1
CrossRef citations to date
0
Altmetric
Research Article

A novel sequence-based prediction method for ATP-binding sites using fusion of SMOTE algorithm and random forests classifier

, , &
Pages 1336-1346 | Received 24 Aug 2020, Accepted 17 Oct 2020, Published online: 28 Oct 2020

References

  • Ke R, Xu Q, Li C, et al. Mechanisms of AMPK in the maintenance of ATP balance during energy metabolism. Cell Biol Int. 2018;42(4):384–392.
  • Suzuki R, Hotta K, Oka K. Transitional correlation between inner-membrane potential and ATP levels of neuronal mitochondria. Sci Rep. 2018;8(1):2993–3004.
  • Kojima S, Ohshima Y, Nakatsukasa H, et al. Role of ATP as a key signaling molecule mediating radiation-induced biological effects. Dose Response. 2017;15(1):1559325817690638–1559325817690611.
  • Mizushima T, Nishida S, Kurokawa K, et al. Negative control of DNA replication by hydrolysis of ATP bound to DnaA protein, the initiator of chromosomal DNA replication in Escherichia coli. Embo J. 1997;16(12):3724–3730.
  • Protein Data Bank. http://www.rcsb.org [cited Jul 2020].
  • Hu J, Li Y, Zhang Y, et al. ATPbind: accurate protein-ATP binding site prediction by combining sequence-profiling and structure-based comparisons. J Chem Inf Model. 2018;58(2):501–510.
  • Chaudhry C, Farr GW, Todd MJ, et al. Role of the gamma-phosphate of ATP in triggering protein folding by GroEL-GroES: function, structure and energetics . Embo J. 2003;22(19):4877–4887.
  • Goldin N, Heyfets A, Reischer D, et al. Mitochondria-mediated ATP depletion by anti-cancer agents of the jasmonate family. J Bioenerg Biomembr. 2007;39(1):51–57.
  • Pitman MR, Powell JA, Coolen C, et al. A selective ATP-competitive sphingosine kinase inhibitor demonstrates anti-cancer properties. Oncotarget. 2015;6(9):7065–7083.
  • Sasaki N, Ishiwata T, Hasegawa F, et al. Stemness and anti-cancer drug resistance in ATP-binding cassette subfamily G member 2 highly expressed pancreatic cancer is induced in 3D culture conditions . Cancer Sci. 2018;109(4):1135–1146.
  • Kumar S. Prediction of metal ion binding sites in proteins from amino acid sequences by using simplified amino acid alphabets and random forest model. Genomics Inform. 2017;15(4):162–169.
  • Srivastava A, Kumar M. Prediction of Zinc binding sites in proteins using sequence derived information. J Biomol Struct Dyn. 2018;36(16):4413–4423.
  • Gao J, Bo Z, Zhu J, et al. Predicting protein ligand binding sites with structure alignment method on Hadoop. CP. 2016;13(2):113–121.
  • Jia J, Liu Z, Xiao X, et al. Identification of protein-protein binding sites by incorporating the physicochemical properties and stationary wavelet transforms into pseudo amino acid composition. J Biomol Struct Dyn. 2016;34(9):1946–1961.
  • Maheshwari S, Brylinski M. Prediction of protein-protein interaction sites from weakly homologous template structures using meta-threading and machine learning. J Mol Recognit. 2015;28(1):35–48.
  • SWISS-PROT Database. https://www.uniprot.org. Accessed February, 2019.
  • Chauhan JS, Mishra NK, Raghava GP. Identification of ATP binding residues of a protein from its primary sequence. BMC Bioinformatics. 2009;10(1):434–442.
  • Chen K, Mizianty MJ, Kurgan L. ATPsite: sequence-based prediction of ATP-binding residues. Proteome Sci. 2011;9(Suppl 1):S4. DOI: https://doi.org/10.1186/1477-5956-9-s1-s4
  • Chen K, Mizianty MJ, Kurgan L. Prediction and analysis of nucleotide-binding residues using sequence and sequence-derived structural descriptors. Bioinformatics. 2012;28(3):331–341.
  • Yu DJ, Hu J, Huang Y, et al. TargetATPsite: A template-free method for ATP-binding sites prediction with residue evolution image sparse representation and classifier ensemble. J Comput Chem. 2013;34(11):974–985.
  • Andrews BJ, Hu J. TSC_ATP: A two-stage classifier for predicting protein-ATP binding sites from protein sequence. 2015 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE, 2015.
  • Chawla NV, Bowyer KW, Hall LO, et al. SMOTE: synthetic minority over-sampling technique. JAIR. 2002;16(1):321–357.
  • Blagus R, Lusa L. Evaluation of SMOTE for high-dimensional class-imbalanced microarray data. International Conference on Machine Learning & Applications. Miami Florida, USA, 2013.
  • Jeatrakul P, Wong KW, Fung CC. Classification of imbalanced data by combining the complementary neural network and SMOTE algorithm. LNCS. 2010; 6444(Part 2):152–159.
  • Bauer RA, Günther S, Jansen D, et al. SuperSite: dictionary of metabolite and drug binding sites in proteins. Nucleic Acids Res. 2009;37(Database issue):D195–D200. (Database issue):
  • Fu L, Niu B, Zhu Z, et al. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–3152.
  • Mcguffin LJ, Bryson K, Jones DT. The PSIPRED protein structure prediction server. Bioinformatics. 2000;16(4):404–405.
  • Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–3402.
  • Faraggi E, Zhou Y, Kloczkowski A. Accurate single-sequence prediction of solvent accessible surface area using local and global features. Proteins Struct Funct Bioinform. 2014;82(11):3170–3176.
  • Yang X, Wang J, Sun J, et al. SNBRFinder: a sequence-based hybrid algorithm for enhanced prediction of nucleic acid-binding residues. PLOS One. 2015;10(7):e0133260. DOI: 10.1371/journal.pone.0133260.
  • Walia RR, Xue LC, Wilkins K, et al. RNABindRPlus: a predictor that combines machine learning and sequence homology-based methods to improve the reliability of predicted RNA-binding residues in proteins. PLOS One. 2014;9(5):e97725. DOI: 10.1371/journal.pone.0097725.
  • Yu DJ, Hu J, Tang ZM, et al. Improving protein-ATP binding residues prediction by boosting SVMs with random under-sampling. Neurocomputing. 2013;104:180–190.