1,865
Views
4
CrossRef citations to date
0
Altmetric
Article

Initial safety evaluation of Enterococcus faecium LBB.E81

ORCID Icon &
Pages 11-17 | Received 24 Sep 2020, Accepted 18 Oct 2020, Published online: 29 Oct 2020

References

  • Franz C, Van Belkum M, Holzapfel W, et al. Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev. 2007;31(3):293–310.,
  • Hlivak P, Odraska J, Ferencik M, et al. One-year application of probiotic strain Enterococcus faecium M-74 decreases serum cholesterol levels. Bratisl Lek Listy. 2005;106:67–72.
  • Kanic Z, Micetic Turk D, Burja S, et al. Influence of a combination of probiotics on bacterial infections in very low birthweight newborns. Wien Klin Wochenschr. 2015;127(S5):210–215. doi: 10.1007/s00508-015-0845-0
  • Vimont A, Fernandez B, Hammami R, et al. Bacteriocin-Producing Enterococcus faecium LCW 44: a high potential probiotic candidate from raw camel milk. Front Microbiol. 2017;8:865.doi: 10.3389/fmicb.2017.00865
  • Bednorz C, Guenther S, Oelgeschläger K, et al. Feeding the probiotic Enterococcus faecium strain NCIMB 10415 to piglets specifically reduces the number of Escherichia coli pathotypes that adhere to the gut mucosa. Appl Environ Microbiol. 2013;79(24):7896–7904.
  • Sukegawa S, Ihara Y, Yuge K, et al. Effects of oral administration of heat-killed Enterococcus faecium strain NHRD IHARA in post-weaning piglets. Anim Sci J. 2014;85(4):454–460.,
  • Bybee S, Scorza A, Lappin M. Effect of the probiotic Enterococcus faecium SF68 on presence of diarrhea in cats and dogs housed in an animal shelter. J Vet Intern Med. 2011;25(4):856–860.
  • Mountzouris K, Tsirtsikos P, Kalamara E, et al. Evaluation of the efficacy of a probiotic containing lactobacillus, bifidobacterium, enterococcus, and pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poultr Sci. 2007;86(2):309–317. doi: 10.1093/ps/86.2.309
  • Cao G, Zeng X, Chen A, et al. Effects of a probiotic, Enterococcus faecium, on growth performance, intestinal morphology, immune response, and cecal microflora in broiler chickens challenged with Escherichia coli K88. Poultr Sci. 2013;92(11):2949–2955. doi: 10.3382/ps.2013-03366
  • Spera RV, Farber BF. Multiply-resistant Enterococcus faecium. JAMA. 1992;268(18):2563–2564. doi:10.1001/jama.1992.03490180095033
  • Morrison D, Woodford N, Cookson B. Enterococci as emerging pathogens of humans. J Appl Microbiol. 1997;83(S1):89S–99S.
  • Franz C, Huch M, Abriouel H, et al. Enterococci as probiotics and their implications in food safety. Int J Food Microbiol. 2011;151(2):125–140.,
  • Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, et al. Update of the list of QPS‐recommended biological agents intentionally added to food or feed as notified to EFSA 12: suitability of taxonomic units notified to EFSA until March 2020. EFS2. 2020;18(7). doi: 10.2903/j.efsa.2020.6174
  • Spera R, Farber B. Multidrug-resistant Enterococcus faecium. An untreatable nosocomial pathogen. Drugs. 1994;48(5):678–688.
  • Adhikari L. High-level aminoglycoside resistance and reduced susceptibility to vancomycin in nosocomial enterococci. J Global Infect Dis. 2010;2(3):231–235. Doi: 10.4103/0974-777X.68534
  • Miller W, Munita J, Arias C. Mechanisms of antibiotic resistance in enterococci. Expert Rev anti Infect Ther. 2014;12(10):1221–1236.
  • Meena S, Mohapatra S, Sood S, et al. Revisiting Nitrofurantoin for Vancomycin Resistant Enterococci. J Clin Diagn Res. 2017;11(6):DC19–DC22.
  • Naruka H, Chand A, Chauhan P, et al. Detection of various virulence factors in high level aminoglycoside resistance and vancomycin resistant enterococci isolates of uropathogenic Enterococci. Int J Res Med Sci. 2019;7(5):1740.doi:10.18203/2320-6012.ijrms20191668
  • EUCAST, The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0, 2020. http://www.eucast.org.
  • EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA Journal. 2012a;10(6):2740.
  • Eaton T, Gasson M. Molecular Screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Appl Environ Microbiol. 2001;67(4):1628–1635.
  • Hanchi H, Mottawea W, Sebei K, et al. The Genus Enterococcus: Between Probiotic Potential and Safety Concerns—An Update. Front Microbiol. 2018;9:1791., doi: 10.3389/fmicb.2018.01791
  • EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Guidance on the safety assessment of Enterococcus faecium in animal nutrition. EFSA Journal. 2012b;10(5):2682.
  • Bertolami M, Faludi A, Batlouni M. Evaluation of the effects of a new fermented milk product (Gaio) on primary hypercholesterolemia. Eur J Clin Nutr. 1999;53(2):97–101.
  • Holzapfel W, Arini A, Aeschbacher M, et al. Enterococcus faecium SF68 as a model for efficacy and safety evaluation of pharmaceutical probiotics. Benef Microbes. 2018;9(3):375–388.
  • Noh C, Kim B, Hong G, et al. Effects of the Administration of Probiotics on Fecal Microbiota Diversity and Composition in Healthy Individuals. J Neurogastroenterol Motil. 2018;24(3):452–459.
  • EU. Register of feed additives pursuant to Regulation (EC) No 1831/2003. Annex I, List of additives (Released 05.08.2020); 2020.
  • Luo R, Liu B, Xie Y, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience. 2012;1(1):18, doi:10.1186/2047-217X-1-18
  • Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–2069.
  • Zankari E, Hasman H, Cosentino S, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640–2644.
  • Alcock B, Raphenya AR, Lau TTY, et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48(D1):D517–D525.
  • Joensen K, Scheutz F, Lund O, et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J Clin Microbiol. 2014;52(5):1501–1510.
  • Zhang Z, Schwartz S, Wagner L, et al. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000;7(1-2):203–214.
  • Osei Sekyere J. Genomic insights into nitrofurantoin resistance mechanisms and epidemiology in clinical Enterobacteriaceae. Future Sci Oa. 2018;4(5):FSO293
  • Guay D. An update on the role of nitrofurans in the management of urinary tract infections. Drugs. 2001;61(3):353–364.
  • Cassir N, Rolain J, Brouqui P. A new strategy to fight antimicrobial resistance: the revival of old antibiotics. Front Microbiol. 2014;5:551
  • Wennersten CB, Moellering RC. Jr, 1980. Mechanism of resistance to penicillin-aminoglycoside synergism in Streptococcus faecium. p. 710–712. In J.D. Nelson and C. Grassi (ed.) Current chemotherapy and infectious disease,. ASM, Washington, D.C.
  • Costa Y, Galimand M, Leclercq R, et al. Characterization of the chromosomal aac(6')-Ii gene specific for Enterococcus faecium. Antimicrob Agents Chemother. 1993;37(9):1896–1903.
  • Eliopoulos G, Wennersten C, Zighelboim-Daum S, et al. High-level resistance to gentamicin in clinical isolates of Streptococcus (Enterococcus) faecium. Antimicrob Agents Chemother. 1988;32(10):1528–1532.
  • Singh K, Malathum K, Murray B. Disruption of an Enterococcus faecium species-specific gene, a homologue of acquired macrolide resistance genes of staphylococci, is associated with an increase in macrolide susceptibility. Antimicrob Agents Chemother. 2001;45(1):263–266.
  • Werner G, Hildebrandt B, Witte W, et al. The Newly described msrc gene is not equally distributed among all isolates of Enterococcus faecium. Antimicrob Agents Chemother. 2001;45(12):3672–3673.
  • Nishioka T, Ogawa W, Kuroda T, et al. Gene cloning and characterization of EfmA, a multidrug efflux pump, from Enterococcus faecium. Biol Pharm Bull. 2009;32(3):483–488.
  • Phillips-Jones M, Harding S. Antimicrobial resistance (AMR) nanomachines-mechanisms for fluoroquinolone and glycopeptide recognition, efflux and/or deactivation. Biophys Rev. 2018;10(2):347–362.
  • Nallapareddy SR, Weinstock GM, Murray BE. Clinical isolates of Enterococcus faecium exhibit strain-specific collagen binding mediated by Acm, a new member of the MSCRAMM family . Mol Microbiol. 2003;47(6):1733–1747.
  • Lam M, Seemann T, Tobias N, et al. Comparative analysis of the complete genome of an epidemic hospital sequence type 203 clone of vancomycin-resistant Enterococcus faecium. BMC Genomics. 2013;14(1):595
  • Qin X, Galloway-Peña J, Sillanpaa J, et al. Complete genome sequence of Enterococcus faecium strain TX16 and comparative genomic analysis of Enterococcus faecium genomes. BMC Microbiol. 2012;12(1):135,
  • Kopit L, Kim E, Siezen R, et al. Safety of the Surrogate microorganism Enterococcus faecium NRRL B-2354 for use in thermal process validation. Appl Environ Microbiol. 2014;80(6):1899–1909.
  • Singh K, Coque T, Weinstock G, et al. In vivo testing of an Enterococcus faecalis efaA mutant and use of efaA homologs for species identification. FEMS Immunol Med Microbiol. 1998;21(4):323–331.
  • Lowe AM, Lambert PA, Smith AW. Cloning of an Enterococcus faecalis endocarditis antigen: homology with adhesins from some oral streptococci. Infect Immun. 1995;63(2):703–706.
  • Mannu L, Paba A, Daga E, et al. Comparison of the incidence of virulence determinants and antibiotic resistance between Enterococcus faecium strains of dairy, animal and clinical origin. Int J Food Microbiol. 2003;88(2-3):291–304. doi:10.1016/S0168-1605(03)00191-0
  • Trivedi K, Cupakova S, Karpiskova R. Virulence factors and antibiotic resistance in enterococci isolated from food-stuffs. Vet Med. 2011;56(No. 7):352–357. doi:10.17221/1584-VETMED
  • Billström H, Sullivan Å, Lund B. P1689 in P1460 – P1884. Clinical Microbiology and Infection. 2006;12:S481–S634.
  • Bhardwaj A, Gupta H, Kapila S, et al. Safety assessment and evaluation of probiotic potential of bacteriocinogenic Enterococcus faecium KH 24 strain under in vitro and in vivo conditions. Int J Food Microbiol. 2010;141(3):156–164. doi:10.1016/j.ijfoodmicro.2010.05.001