1,817
Views
1
CrossRef citations to date
0
Altmetric
Research Article

In vivo assessment of acute and subacute toxicity of ethyl acetate extract from aerial parts of Geum urbanum L

, , , , , , , , & show all
Pages 61-73 | Received 01 Oct 2020, Accepted 06 Nov 2020, Published online: 15 Dec 2020

References

  • Silva MG, Aragão TP, Vasconcelos CF, et al. Acute and subacute toxicity of Cassia occidentalis L. stem and leaf in Wistar rats. J Ethnopharmacol. 2011;136(2):341–346.
  • Doncheva S. Bulgaria is first in the export of herbs [in Bulgarian] 2016. Available from: http://uspelite.bg/bylgariq-e-purvenec-v-evropa-i-na-chelno-miasto-v-sveta-po-iznos-na-bilki
  • INCF. The medicinal plants-natural resources, lightweight and livehood. Handbook for journalists [in Bulgarian]. Sofia; 2015. (Foundation IaNC, editor.).
  • Pamukoff D. The Science of Biomedicine and Phytotherapy 2017. Available from: http://dr-pamukoff.com/index.php?option=com_content&view=article&id=5&Itemid=6&lang=en
  • Valko M, Rhodes C, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160(1):1–40.
  • Abdel-Daim MM, Ghazy EW. Effects of Nigella sativa oil and ascorbic acid against oxytetracycline-induced hepato-renal toxicity in rabbits. Iran J Basic Med Sci. 2015;18(3):221–227.
  • Velioglu Y, Mazza G, Gao L, et al. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agric Food Chem. 1998;46(10):4113–4117.
  • Sastre J, Pallardó FV, Viña J. Mitochondrial oxidative stress plays a key role in aging and apoptosis. IUBMB Life. 2000;49(5):427–435.
  • Takabe W, Niki E, Uchida K, et al. Oxidative stress promotes the development of transformation: involvement of a potent mutagenic lipid peroxidation product, acrolein. Carcinogenesis. 2001;22(6):935–941.
  • Khan MA, Baseer A. Increased malondialdehyde levels in coronary heart disease. J Pak Med Assoc. 2000;50(8):261–264.
  • Mora A, Paya M, Rios J, et al. Structure-activity relationships of polymethoxyflavones and other flavonoids as inhibitors of non-enzymic lipid peroxidation. Biochem Pharmacol. 1990;40(4):793–797.
  • Kiselova-Kaneva Y. Biological effects of oxidative stress and herbs as a means of countering [in Bulgarian]. 2013. (Antida, Varna, editor). ISBN: 978-619-90019-4-3 33.
  • Cheng XR, Jin HZ, Qin JJ, et al. Chemical constituents of plants from the genus Geum. Chem Biodivers. 2011;8(2):203–222.
  • Assyov B, Petrova A, Dimitrov D, et al. Conspectus of the Bulgarian vascular flora: distribution maps and floristic elements, Fourth revised and updated edition. Sofia; 2012. (Foundation Bb, editor.).
  • Paun G, Neagu E, Albu C, et al. Inhibitory potential of some Romanian medicinal plants against enzymes linked to neurodegenerative diseases and their antioxidant activity. Pharmacogn Mag. 2015;11(Suppl 1):S110–S116.
  • Granica S, Kłębowska A, Kosiński M, et al. Effects of Geum urbanum L. root extracts and its constituents on polymorphonuclear leucocytes functions. Significance in periodontal diseases. J Ethnopharmacol. 2016;188:1–12.
  • Gstirner F, Widenmann H. Uber Inhaltsstoffe des Rhizoms von Geum urbanum L. Sci Pharm. 1964;32:98–104.
  • Dimitrova L, Zaharieva MM, Popova M, et al. Antimicrobial and antioxidant potential of different solvent extracts of the medicinal plant Geum urbanum L. Chem Cent J. 2017;11(1):113.
  • Piwowarski JP, Granica S, Kosiński M, et al. Secondary metabolites from roots of Geum urbanum L. Biochem Syst Ecol. 2014;53:46–50.
  • Kosman VM, Blinova KF, Zenkevich IG. Identification and quantitative determination of eugenole in the underground organs of Geum urbanum L. Rastitel'nye Resursy. 1995;31:93–96.
  • Psenak M, Jindra A, Stano J, et al. Vicianose from the root of Geum urbanum. Planta Med. 1972;22(1):93–96.
  • Nikolova M, Valyovska-Popova N, Dimitrova M, et al. High-mountain Bulgarian plants- free radical scavenging activity and flavonoid composition. J BioSci Biotechnol. 2014:29–33. Paris: OECD Publishing. https://doi.org/10.1787/9789264070684-en.
  • Panizzi L, Catalano S, Miarelli C, et al. In vitro antimicrobial activity of extracts and isolated constituents of Geum rivale. Phytother Res. 2000;14(7):561–563.
  • Kaminska J, Assenow I. Phytochemical studies of Geum bulgaricum Panc. Acta Pol Pharm. 1971;28(2):201–206.
  • Yean MH, Kim JS, Hyun YJ, et al. Terpenoids and phenolics from Geum japonicum. Korean J Pharmacogn. 2012;43(2):107–121.
  • Nijveldt RJ, Van Nood E, Van Hoorn DE, et al. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr. 2001;74(4):418–425.
  • Fotsis T, Pepper MS, Aktas E, et al. Flavonoids, dietary-derived inhibitors of cell proliferation and in vitro angiogenesis. Cancer Res. 1997;57(14):2916–2921.
  • Dimitrova L, Popova M, Bankova V, et al. Anti-quorum sensing potential of Geum urbanum L. C R Acad Bulg Sci. 2019;72(3):341–349.
  • Walker JN, Flores-Mireles AL, Pinkner CL, et al. Catheterization alters bladder ecology to potentiate Staphylococcus aureus infection of the urinary tract. Proc Natl Acad Sci USA. 2017;114(41):E8721–E8730.
  • Fisher EL, Otto M, Cheung GY. Basis of virulence in enterotoxin-mediated staphylococcal food poisoning. Front Microbiol. 2018;9:436.
  • Upadhyayula S, Kambalapalli M, Asmar BI. Staphylococcus epidermidis urinary tract infection in an infant. Case Rep Infect Dis. 2012;2012:1–2.
  • Schoeni JL, Wong ACL. Bacillus cereus food poisoning and its toxins. J Food Prot. 2005;68(3):636–648.
  • OECD/OCDE. OECD Test No. 423: Acute Oral toxicity - Acute Toxic Class Method, OECD Guidelines for the Testing of Chemicals, Section 4. Paris: OECD Publishing. doi:10.1787/9789264071001-en.
  • OECD/OCDE. Test No. 407: Repeated Dose 28-day Oral Toxicity Study in Rodents, OECD Guidelines for the Testing of Chemicals, Section 4. Paris: OECD Publishing. doi:10.1787/9789264070684-en.
  • Hassan HM, Fridovich I. Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch Biochem Biophys. 1979;196(2):385–395.
  • Pick E, Mizel D. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J Immunol Methods. 1981;46(2):211–226.
  • Levine RL, Garland D, Oliver CN. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464–478.
  • Adachi H, Ishii N. Effects of tocotrienols on life span and protein carbonylation in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci. 2000;55(6):B280–B285.
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–275.
  • Kiernan JA. Histological and histochemical methods: theory and practice. 4 ed. UK: Scion; 2008. (Bloxham, editor.).
  • LeicaBiosystems. http://www.leicabiosystems.com/specimen-preparation/tissue-processing/details/product/leica-tp1020/ [Internet]; 2013 [cited 2013 Nov 5].
  • Spector G, editor. Preparation of cells and tissues for fluorescence microscopy. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2006.
  • Matsuno K, Ezaki T, Kotani M. Splenic outer periarterial lymphoid sheath (PALS): an immunoproliferative microenvironment constituted by antigen-laden marginal metallophils and ED2-positive macrophages in the rat. Cell Tissue Res. 1989;257(3):459–470.
  • Van Rees E, Sminia T, Dijkstra C. Structure and development of the lymphoid organs. Pathobiol Aging Mouse. 1996;1:173–187.
  • Amarowicz R, Pegg R, Rahimi-Moghaddam P, et al. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem. 2004;84(4):551–562.
  • Saeed N, Khan MR, Shabbir M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement Altern Med. 2012;12(1):221.
  • Gangwar M, Gautam MK, Sharma AK, et al. Antioxidant capacity and radical scavenging effect of polyphenol rich Mallotus philippenensis fruit extract on human erythrocytes: an in vitro study. Sci World J. 2014;2014:1–12.
  • Rodriguez C, Mayo JC, Sainz RM, et al. Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res. 2004;36(1):1–9.
  • Sonam KS, Guleria S. Synergistic antioxidant activity of natural products. Ann Pharmacol Pharm. 2017;2(16):1–6.
  • Fontella FU, Siqueira IR, Vasconcellos APS, et al. Repeated restraint stress induces oxidative damage in rat hippocampus. Neurochem Res. 2005;30(1):105–111.
  • Lucca G, Comim CM, Valvassori SS, et al. Effects of chronic mild stress on the oxidative parameters in the rat brain. Neurochem Int. 2009;54(5–6):358–362.
  • Bahramikia S, Ardestani A, Yazdanparast R. Protective effects of four Iranian medicinal plants against free radical-mediated protein oxidation. Food Chem. 2009;115(1):37–42.
  • Jackie T, Haleagrahara N, Chakravarthi S. Antioxidant effects of Etlingera elatior flower extract against lead acetate-induced perturbations in free radical scavenging enzymes and lipid peroxidation in rats. BMC Res Notes. 2011;4(1):67–68.
  • Bhattacharya S, Bhattacharya A, Kumar A, et al. Antioxidant activity of Bacopa monniera in rat frontal cortex, striatum and hippocampus. Phytother Res. 2000;14(3):174–179.
  • Kayali R, Çakatay U, Tekeli F. Male rats exhibit higher oxidative protein damage than females of the same chronological age. Mech Ageing Dev. 2007;128(5–6):365–369.
  • Ito F, Sono Y, Ito T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants. 2019;8(3):72.
  • Mukoda T, Sun B, Ishiguro A. Antioxidant activities of buckwheat hull extract toward various oxidative stress in vitro and in vivo. Biol Pharm Bull. 2001;24(3):209–213.